
UNIVERSITY TEKNOLOGI MARA

CODE[X]: NEXUS, A NARRATIVE-

DRIVEN 2D TOP-DOWN STYLE

ADVANTURE GAME ABOUT

INTRODUCTORY-LEVEL C++

PROGRAMMING USING GODOT 4

AMIR HAFIZI BIN MUSA

BACHELOR OF COMPUTER SCIENCE (HONS.)

JULY 2025

Universiti Teknologi MARA

Code[X]: Nexus, a Narrative-Driven 2D

Top-Down Style Adventure Game about

C++ Programming using Godot 4

Amir Hafizi Bin Musa

Thesis submitted in fulfillment for
Bachelor of Computer Science (Hons.)

Faculty of Computer and Mathematical Sciences

JULY 2025

SUPERVISOR’S APPROVAL

CODE[X]: NEXUS, A NARRATIVE-DRIVEN 2D TOP-DOWN STYLE

ADVENTURE GAME ABOUT C++ INTRODUCTORY-LEVEL

PROGRAMMING USING GODOT 4

By

AMIR HAFIZI BIN MUSA

2024745815

This thesis was prepared under the direction of thesis supervisor, Ahmad Farid Bin

Najmuddin. It was submitted to the Faculty of Computer and Mathematical Sciences

and was accepted in partial fulfilment of the requirements for the degree of Bachelor

of Computer Science (Hons.).

Approved by:

………………………………

Ahmad Farid Bin Najmuddin

Thesis Supervisor

JULY 9, 2025

DECLARATION

I certify that this report and the research to which it refers are the product of my own

work and that any ideas or quotation from the work of other people, published or

otherwise are fully acknowledged in accordance with the standard referring practices of

the discipline.

…………………………………

AMIR HAFIZI BIN MUSA

2024745815

JULY 9, 2025

iv

TABLE OF CONTENTS

CONTENTS PAGE

SUPERVISOR’S APPROVAL ii

DECLARATION iii

TABLE OF CONTENTS iv

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ABBREVIATIONS viii

CHAPTER ONE: INTRODUCTION

1.1 Introduction 1

1.2 Background of Study 2

1.3 Problem Statement 3

1.4 Project Objectives 5

1.5 Scope of Study 5

1.6 Significance of Study 7

1.7 Summary 8

CHAPTER TWO: LITERATURE REVIEW

 2.1 Introduction 9

 2.2 Overview of Computer Science Education 11

 2.3 Overview of Game-Based Learning (GBL) 12

 2.4 Specific Description of Game-Based Learning 13

 2.5 Techniques in Game-Based Learning 14

2.5.1 Progression System 15

2.5.2 Challenge and Quest 16

2.5.3 Narratives and Storytelling 17

v

 2.6 Common Features Related to Proposed Project 20

 2.6.1 Colobot: Gold Edition 21

 2.6.2 CodeCombat 23

 2.6.3 Human Resource Machine 26

 2.6.4 Features Comparison of Related Game-Based 29

Learning Games

 2.7 Highlight the Chosen Techniques & Features with Justification 30

 2.8 Summary 35

CHAPTER THREE: METHODOLOGY

3.1 Introduction 36

3.2 Project Methodology 36

 3.2.1 Design 39

 3.2.2 Develop / Re-Develop 42

 3.2.3 Evaluate 42

 3.2.4 Test 43

 3.2.5 Review & Release Preparation 44

 3.2.6 Release 44

3.3 Summary of Project Methodology 45

3.4 System Architecture 47

3.5 Hardware and Software Requirements 52

3.6 Conclusion 55

REFERENCES 56

vi

LIST OF FIGURES

FIGURE PAGE

2.1 Tree Structure of the Proposed Project 10

2.2 Examples of using leveling up and stage levels selection 15

 as the game's core progression system.

2.3 Examples of games using challenges to immerse players 16

into the game world

2.4 Examples of games using quest system to give players goals to pursue 16

2.5 Examples of games using NPC dialogue system for story progression 17

2.6 Examples of games using cutscenes to lock players engagement 18

2.7 Main menu of Colobot: Gold Edition 22

2.8 World design concept of Colobot: Gold Edition 22

2.9 Mission menu of Colobot: Gold Edition 22

2.10 Program editor to control the robot mechanism 23

2.11 World selection map inside of CodeCombat 24

2.12 One of coding mission inside CodeCombat 24

2.13 Characters menu of CodeCombat 25

2.14 Map exploration inside chosen world 25

2.15 Human Resource Machine storyline and dialog system 27

2.16 Level design of Human Resource Machine stage 27

2.17 Mission challenges of Human Resource Machine 27

2.18 Levels progression of Human Resource Machine 28

2.19 Examples of games using own unique system and 30

cutscene to deliver the storylines.

2.20 Examples of games using dialogue for NPC to progress the story. 31

2.21 Examples of direct narration to lead players gameplay direction 32

2.22 Examples of games using 2D top-down pixel art style genre 32

2.23 Examples of games using the freedom of art style creation 33

2.24 Godot 4 Game Engine Logo 33

 vii

2.25 Godot 4 Game Engine Scene Editor Interface 34

2.26 Godot 4 Game Engine Code Editor Interface 34

3.1 Game Development Life Cycle 37

3.2 Storyboard Draft for the "Conduit's Variable" Quest 40

3.3 Concept Art for the Player Character and a Game World Area 41

3.4 System Architecture Design of Proposed Project 49

3.5 Flowchart diagram for the proposed project 50

3.6 Use case diagram of the proposed project 51

viii

LIST OF TABLES

TABLE PAGE

2.1 GBL Techniques Comparison 18

2.2 Related GBL games preview image 20

2.3 Comparison to other Related GBL Games 29

3.1 Project Methodology (GDLC) 37

3.2 Concept of the designed project quest's dialogues 41

3.3 Summary of Project Methodology 45

3.4 Software Requirements Details 52

3.5 Hardware Requirements Details 53

ix

LIST OF ABBREVIATIONS

CBOT C++ inspired language

CS Computer Science

GBL Game-Based Learning

GDLC Game Development Life Cycle

HRM Human Resource Machine

HUD Head-Up Display

MEEGA+ Multidimensional Evaluation of Educational Games Plus

NPC Non-Player Character

RPGs Role-Playing Games

SMEs Subject Matter Experts

UI User Interface

UX User Experience

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

In today's world, the processes of learning and teaching are transforming at a rapid

rate. Conventional methods such as books and lectures are often insufficient to engage

the interest of most students, particularly when it comes to complex subjects like

Computer Science (Al-Maroof et al., 2024). With technology becoming deeply

integrated into our lives, there is an increasing demand for innovative and efficient

ways to learn, one of which is Game-Based Learning (GBL).

GBL exploits the playfulness and interactive nature of computer games to present

learning concepts in an easy and enjoyable manner. This approach can simplify

learning, making it more enjoyable and facilitating an easier understanding of abstract

ideas that otherwise cause problems (de Oliveira, de Oliveira, & de Souza, 2022).

However, while GBL in Computer Science has the potential to reduce or eliminate

study difficulties, it is still not as commonly utilized as it could be in learning games

designed for Computer Science students (Kalogiannakis, Papadakis, & Zourmpakis,

2021).

Briefly, this study will examine how computer games able to aid students in

Computer Science field by giving them a better, interactive way of learning while

contributing to the growing area of educational technology.

2

1.2 Background of Study

Nowadays, the world is witnessing significant and rapid changes in technology, which

are impacting all aspects of life, including education. With the prevalence of digital

media, online environments, and interactive technologies, the effectiveness of

traditional classroom learning in the 21st century is being called into question. While

textbook and lecture-based learning have been central to formal education for

centuries, contemporary students are increasingly drawn towards interactive,

graphical, and game-like modes of engagement (Kalogiannakis et al., 2021).

In recent years, educational studies have highlighted a widening gap between

traditional teaching methods and the engagement levels of students, particularly in

demanding subjects like Computer Science, History, and Mathematics (Al-Maroof et

al., 2024; Tan, Neill, & D’Souza, 2021). Such subjects often involve sequential

concepts or abstract ideas that can be difficult to grasp and retain in passive learning

environments. Traditional lectures, which are often non-interactive and lack modern

storytelling elements, can leave students feeling bored, demotivated, or confused

(Chan et al., 2023). This has led to the increased adoption of technology in education,

particularly in the form of Game-Based Learning (GBL)

GBL is the application of video games and their mechanics to teach specific skills

or knowledge domains in an interactive and engaging manner. Current research

suggests that learning games have the potential to significantly improve memory

recall, problem-solving abilities, and the motivation to learn (de Oliveira, de Oliveira,

& de Souza, 2022). By combining a story with interactive challenges, learning games

offer a dynamic alternative to standard educational methods. Among different game

genres, 2D top-down style adventure games are ideally suited for educational

experiences because they provide a linear progression that allows developers to

seamlessly incorporate puzzles, narratives, and question-based challenges (van Gaalen

et al., 2021). If designed with care, such games can become effective instruments for

reinforcing learning goals while keeping the player interested and curious. Yet, despite

the established advantages of gamification in education, many institutions continue to

3

rely on static content delivery. This disconnect contemporary learning preferences and

conventional educational tools presents an opportunity to investigate new methods

that can improve student learning outcomes.

Thus, this study proposes the development of the project, a 2D Learn & Gain top-

down style adventure video game based on the Godot Engine (v4.4), for university

students studying Computer Science. Interactive puzzle, story, and gamified obstacle

perhaps will help the students to have a more engrossing, stimulating, and effective

learning experience that meets the cognitive and motivational needs of the modern

learner.

1.3 Problem Statement

As the world of technology expands, the schooling system needs better ways of

teaching because some of them still use passive methods of teaching like lectures.

Traditional ways of teaching like lectures, textbooks, and slide presentations remain,

but these methods do not necessarily engage students actively or support knowledge

retention, especially in technical fields like Computer Science (Chan et al., 2023).

Most learners, especially the first-year diploma students of university, are

struggling to be interested in Computer Science (Tan, et al., 2021; Holly, et al., 2024).

This is based on the reality that the subject is very analytical and abstract, and is often

delivered in non-interactive and static approaches that are criticized for being too

theoretical (Al-Maroof et al., 2024; Holly et al., 2024). There is also a significant gap

in technology that facilitates individuals to learn in a fun way, for example through

games and stories (Cheong, Flippou & France, 2020). When there is no context,

problem-solving activities, and stories, students may struggle to relate theory to real-

life situations, which can lead to lower motivation and performance (de Oliveira, de

Oliveira, & de Souza, 2022).

4

Game-Based Learning (GBL) has been one such remedy for these issues by the

incorporation of learning content with engaging mechanics that encourage analytical

thinking, collaboration, and exploration (Kalogiannakis, et al., 2021). However,

though gamified learning solutions have gained growing popularity, most available

solutions are either too simple or not exactly tailored to the requirements of the

Computer Science curriculum (Tan, et al., 2021). In addition, students' varied learning

needs demand experiences that are not only interactive, but narrative, image-centered

and pedagogically designed.

The study by Kucher, T. (2021) conclude that games that have definite stories,

decisions to proceed and associated challenges assisted students in recalling

procedural and theoretical information more effectively than normal tests. No such

tools are being created in tertiary education, particularly for Southeast Asian Computer

Science students (Kucher, T., 2021).

To summarize, students struggle to remain engaged and retain information when

learning Computer Science through traditional methods like lectures and textbooks.

Existing game-based learning software often fails to address this, being either too

broad or lacking the specific, structured content required for the subject. Consequently,

there is a scarcity of interactive, story-driven educational games that are specifically

mapped to the curriculum of first-year university diploma courses in computer science.

This continuous lack of innovative tools negatively impacts students' motivation,

engagement, and overall performance in their technical courses.

5

1.4 Project Objectives

To address the problem of student motivation and knowledge retention in Computer

Science learning, this project aims to design a 2D Learn & Gain Top-down Style

Adventure Game for first-year university diploma students to extend learning by using

interactive storytelling and lesson gamification. In this respect, objectives are to:

1. To identify an effective game-based learning (GBL) method in programming

education in enhance student motivation.

2. To develop a 2D top-down style learning adventure game, in learning

programming concepts that includes GBL elements using Godot Engine v4.4.

3. To assess the usability of the developed GBL game towards the targeted

students.

1.5 Scope of Study

The project will focus on the implementation of Game-Based Learning (GBL) in

Computer Science focusing on programming topics education through a 2D top-down

style adventure game. The project aims to explore on how interactive narrative and

puzzle goes within a top-down game can helps students' interest, improve concept

comprehension, and improve memory recall, especially among university students.

The research investigates on the way of how study content can be more gamified and

placed within a context of a narrative. This integrates learning with advancement in a

game in overcoming common problems related to the traditional means of learning.

The proposed solution of the project is able to provide:

• A narrative-driven gameplay experience with progression themed levels

representing variety of fundamental topics in C++ programming field.

• A challenge-based system that enables students lean and progress by

answering questions or solving puzzles in relation to the subject field.

6

• A visual cues and storytelling elements designed to enhance and improve

students understanding regarding the concept topics such as history and

overview of C++, basic syntax and data types, basic data structures and basic

algorithms.

This project will be developed using the Godot v4.4 game engine, it will be targeted

towards the Windows and Web (HTML5) platforms for deployment. The game is

designed to be lightweight, has low system specification requirements and easily

accessible via browser or Windows executable file (.exe), while also suitable for both

classroom use or even independent learning. The target users are first-year of diploma

in Computer Science of UiTM who are new to Computer Science or are struggling

with the foundation concept.

The scope of the game's functionality revolves around a single-player, 2D top-

down RPG-style adventure with level-based progression. It is designed to offer a

narrative-driven gameplay experience where levels are themed to represent

fundamental topics in the C++ programming language. The core learning mechanic is

a challenge-based system that allows students to progress by answering questions or

solving puzzles related to their studies. This is supported by visual cues, storytelling

elements, assets, and animations designed to enhance the learning themes. The game

will also feature basic performance tracking, monitoring metrics such as completed

questions and total playtime.

The project is intentionally restricted to introductory-level programming topics.

Specifically, the educational content will cover the history and overview of C++, basic

syntax and data types, basic data structures, and basic algorithms. The target users are

specifically first-year Diploma in Computer Science students at UiTM who are either

new to the field or struggling with foundational concepts. This project will be

developed using the Godot Engine v4.4 and will be targeted for deployment on

Windows and Web (HTML5) platforms.

7

1.6 Significant of Study

With the presented solutions, the significant towards the body of knowledge lies within

the utilization of Game-Based Learning (GBL) principles in Computer Science

education, more precisely the learning of abstract and procedural material by students.

This will help in emerging the area of educational technology and gamification,

showing how narrative-based game environments can enhance learning experiences

and retention rates among students in the related field.

The significance of this study is twofold, first it offers a practical model for the

development of learning games for topic-specific content towards other game

developers and it presents the argument for the value of interactivity, narrative, and

challenge-based progression while fostering student motivation and understanding. In

doing so, it helps bridge the gap between abstract theory and actual practice in an

interesting and easily accessible way.

This study is primarily useful for first-year university diploma computer science

students who struggle with traditional learning, offering them an entertaining and

enjoyable alternative that transforms difficult programming concepts into a more

easily digestible format. It also benefits lecturers, who can utilize the resulting game

as an alternative teaching tool to enhance their lessons, encourage critical thinking,

and introduce variation in classwork. Ultimately, the study aims to provide a

convenient learning environment where students can learn at any time and from

anywhere, thereby promoting self-learning.

Through the integration of narrative and subject-based challenges, the project

demonstrates the ways in which purposeful game design can positively enhance the

practice of education by promoting more effective creation and accessible learning

software in the digital era where we must adapt, not reject.

8

1.7 Summary

This chapter describes that Computer Science education must be enhanced by

innovative and interactive approaches like Game-Based Learning (GBL).

Conventional teaching cannot hold students’ attention span and interest, particularly if

the subject matter is complicated or abstract in nature, such as in the case of algorithms

and binary logics.

Because of this, in order to address this issue, the proposed project will provide

interactive and narrative learning experiences. The purpose of this proposal is to

enhance student engagement and retention by incorporating educational materials

within a gamified system, developed using the Godot Engine v4.4.

The solution scope involves targeting first-year university diploma students with

an emphasis on programming courses at the introductory level through single-player

mode with puzzles and quizzes that are dialogue-based. The study significance

involves the contribution to educational technology through the demonstration that

storytelling, game design, and visual learning can come together to work effectively

in augmenting and supplementing the current model of formal education.

9

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides an overview of current research regarding Game-Based

Learning (GBL) and its implementation in Computer Science education, specifically

in the instruction of introductory programming. This is to lay down a theoretical

background for this project, an interactive 2D top-down adventure game created with

the Godot Engine as an instruction medium of C++ programming for first-year

diploma Computer Science students.

Classical teaching methods lead to disengagement among students since

programming concepts are intangible and decontextualized (Tan et al., 2021).

Educators have subsequently looked for substitute interactive and engaging learning

tools, like games, that promote active learning, problem-solving and engagement

through gameplay mechanics including progression mechanisms, challenges and story

(Qian & Clark, 2019; Cheong et al., 2020).

This literature review aims to explore relevant GBL approaches in education

program games such as Colobot: Gold Edition, CodeCombat and Human Resource

Machine that identifies elements which enabling effective learning process. These will

be utilized to inform design within this project in a way that considers the integration

of actual programming tasks in an interactive story environment that is appropriate for

new students (Kucher, 2021). Figure 2.1 shows the overall tree structure of the

proposed project.

10

Figure 2.1 Tree Structure of the Proposed Project

11

2.2 Overview of Computer Science Education

Computer Science (CS) education has become a widely viewed technical education in

the modern era, particularly at diploma and undergraduate levels. Nevertheless, it is

documented that many freshman CS students struggle with fundamental programming

concepts, most notably due to the fact that subjects such as variables, loops,

conditionals and object-oriented design are often abstract in nature (Papastergiou,

2009; Holly et al., 2024).

Traditional education heavily relies on methods like lectures, notes, slides,

textbook and coding exercises, which has shown often fail to fully engage students or

provide meaningful context for learning process (Tan et al., 2021). This causes the

drive in having low motivation, poor retention rates, low attention span and high

dropout rates especially among first-year students who are just completely new to

programming (Arnedo & García, 2023).

Studies have determined that the majority of students consider programming as

difficult and out of reach, primarily because ideas are taught in isolation without clear

real-world applications (Cheong et al., 2020). In addition, the lack of immediate

feedback and interactivity in conventional settings limits channels for active learning,

trial and error, which required to gain mastery in programming field (Qian & Clark,

2019).

To counter these challenges, educators and research professionals have resorted to

alternative learning strategies, including interactive tools, visual programming

environments and gamified learning systems (Kucher, 2021). All these are designed

to increase access to programming by positioning learning in immersive and

contextualized experiences.

One of the most promising areas is the integration of Game-Based Learning (GBL)

into the teaching of CS. Learning games are structured but enjoyable environments in

which students can learn by trying out, problem-solving and gradually developing

mastery over concepts and representations of intellectual processes employed in actual

programming (van Gaalen et al., 2021). Examples of games such as Colobot: Gold

12

Edition, CodeCombat and Human Resource Machine showcase how learning goals

can be transferred to game mechanics to improve participation and comprehension

(Heithausen, 2020).

With the growing demand for skilled programmers and the importance of early

success in shaping students' confidence in CS, there is a strong need to explore new

methods, which aligned with today's digitally native students' demands and learning

patterns (Boyle et al., 2016).

2.3 Overview of Game-Based Learning (GBL)

Game-Based Learning (GBL) is the practice of using digital games in learning

contexts to facilitate improved learning outcomes through an interactive and dynamic

experience (Kalogiannakis, et al., 2021). While traditional methods often rely on

passive learning approaches such as reading books and attending lectures, GBL

promotes active engagement by allowing students to tackle problems, receive

immediate feedback, and progress at their own pace (de Oliveira, et al., 2022).

The theoretical foundation of GBL is closely linked to experiential learning, which

posits that learning occurs most effectively when students engage in a concrete

experience, followed by reflection and application (Lozano-Lozano et al., 2023;

Cheong et al., 2020). Computer games inherently support this cycle by immersing

players in challenges that require decision-making, experimentation, and iterative

refinement. Research suggests that games are effective because they align with the

learning patterns of contemporary students, who are accustomed to fast-paced,

visually rich, and interactive digital environments (Chan et al., 2023).

Because of this, it increases the motivation for them, which is a key factor in

student engagement and long-term knowledge retention (Holly et al., 2024).

Furthermore, games can also reduce cognitive load by presenting information in

manageable chunks, allowing the students to build confidence gradually (Choi &

Choi, 2024).

13

GBL has shown promises in helping students grasp abstract concepts like loops,

conditionals, functions and object-oriented programming (Tan et al., 2021). Existing

GBL games like Colobot: Gold Edition, CodeCombat and Human Resource Machine

have proved that engaging world building and well-crafted gameplay mechanics,

including progression systems, meaningful challenges and immediate feedback

significantly enhance learning while improving understanding of programming basics

(Arnedo & García, 2023; Heithausen, 2020).

Even though GBL will not replace traditional teaching practices, it can be used as

a tool that enhances motivation, promotes self-learning and supports experimentation,

which are key processes in acquiring programming skills (van Gaalen et al., 2021).

These insights lay the foundation for the proposed project, which integrates GBL

elements into a narrative-driven 2D top-down adventure game designed in teaching

introductory-level C++ programming to first-year diploma students.

2.4 Specific Description of Game-Based Learning

Game-Based Learning (GBL) goes beyond entertainment by integrating structured

learning objectives into gameplay, which promotes active engagement rather than

passive reception (Kalogiannakis et al., 2021). Games act as interactive systems that

can simulate real-world challenges, promote decision-making, and offer immediate

feedback for key elements that enhance deep learning and retention (Cheong et al.,

2020).

According to recent studies, well-designed educational games boost student

motivation and understanding, particularly for complex or abstract topics like

programming logic and syntax (Al-Maroof et al., 2024). This aligns with experiential

learning theory, which posits that meaningful learning happens through hands-on

experiences, reflection, and application. Digital games naturally facilitate this process

by immersing players in structured challenges that involve problem-solving, trial and

error, and iterative improvement, effectively mirroring real-world programming tasks

(Lozano-Lozano et al., 2023).

14

In GBL environments, progressive difficulty, embedded tutorials and storytelling

help students build confidence and competence gradually (van Gaalen et al., 2021).

Games like Colobot: Gold Edition, CodeCombat and Human Resource Machine align

gameplay with learning goals to boost engagement and understanding (Heithausen,

2020; Arnedo & García, 2023). They introduce programming concepts step-by-step,

starting with basic commands, then advancing to loops, conditionals, and functions

(Heithausen, 2020).

GBL supports self-directed learning, letting students explore content at their own

pace and revisit difficult areas without pressure (Kucher, 2021). It also enables

mastery-based progression, requiring a full understanding of one concept before

advancing, which reinforces fundamentals before introducing greater complexity

(Zainuddin at el., 2020).

In introductory-level programming, GBL offers a low-stakes environment where

mistakes are part of learning, not a failure (Choi & Choi, 2024). This is crucial for

first-year diploma students lacking confidence in technical subjects. By presenting

programming as gameplay, students become more open to experimenting, debugging,

and refining code, concluding the key skills in software development.

2.5 Techniques in Game-Based Learning

Game-Based Learning (GBL) relies on a variety of engagement-enhancing techniques

that promote motivation, knowledge retention and problem-solving skills. Among the

most impactful are progression systems, challenge-based puzzles and narrative-driven

storytelling (van Gaalen et al., 2021). These techniques are particularly effective in

educational contexts such as introductory programming instruction, where abstract

concepts can be difficult for students to grasp without meaningful context or structured

support (Al-Maroof et al., 2024).

15

2.5.1 Progression System

A progression system is a game design mechanism that allows players to advance

through increasing levels of difficulty, often unlocking new abilities, tools, or content

along the way (Cheong et al., 2020). In educational settings, progression systems help

enhances learning by gradually introducing new challenges while reinforcing

previously acquired knowledge (Zainuddin et al., 2020). This approach aligns with

mastery-based learning, where students must demonstrate understanding before

moving to more complex topics.

In programming education, this structure mirrors how coding concepts are

typically introduced, starting with basic syntax and logic before progressing to loops,

conditionals, functions, and object-oriented principles (Arnedo & García, 2023).

Games like Colobot: Gold Edition and CodeCombat use level-based progression to

guide players through increasingly complex programming tasks, making them ideal

models for this project (Heithausen, 2020). Figure 2.2 show the example usage of

leveling system as the main progression system.

Figure 2.2 Examples of using leveling up and stage levels selection as the game’s core progression

system.

16

2.5.2 Challenge and Quest

Challenge-based gameplay involves presenting students with problems or quests that

require logical reasoning, decision-making, and iterative trial-and-error (Kucher,

2021). Puzzles are one of the most commonly used challenge formats in educational

games, especially those designed for teaching programming fundamentals

(Heithausen, 2020).

Games like Human Resource Machine present players with input-output puzzles

that simulate real-world programming problems (e.g., sorting values, comparing

numbers, managing memory cells), encouraging algorithmic thinking and debugging

skills (van Gaalen et al., 2021). These mechanics not only reinforce technical

knowledge but also foster self-directed exploration, which is essential for mastering

complex subjects like programming (Choi & Choi, 2024). Figure 2.3 shows the usage

of challenges system, meanwhile figure 2.4 shows the example of quest system.

Figure 2.3 Examples of games using challenges to immerse players into the game world

Figure 2.4 Examples of games using quest system to give players goals to pursue

17

2.5.3 Narratives and Storytelling

Narrative elements provide emotional engagement and contextual meaning to

gameplay, making them powerful tools for enhancing motivation and memory recall

(Kucher, 2021). In educational games, stories help frame abstract problems within

relatable scenarios, allowing players to better understand the relevance and application

of what they're learning (Cheong et al., 2020).

For example, Colobot: Gold Edition immerses players in a science fiction storyline

where they must program robots to colonize alien planets using a C++ inspired

language called CBOT (Alves & Letouze, 2018). This narrative-driven approach

increases student investment and encourages deeper cognitive processing of

programming concepts (Giannakoulas & Xinogalos, 2024).

While some educational games like CodeCombat focus more on mechanics than

story, research suggests that adding strong narrative components significantly

enhances both emotional engagement and long-term interest in learning (van Gaalen

et al., 2021). This shapes the proposed project’s design, uniting all three techniques

within a cohesive, narrative-driven experience. Figure 2.5 shows the usage of narrative

dialogue system, meanwhile figure 2.6 shows the usage of narrative cutscenes.

Figure 2.5 Examples of games using NPC dialogue system for story progression

Figure 2.6 Examples of games using cutscenes to lock players engagement

18

2.5.4 Techniques Comparison

Table 2.1 GBL Techniques Comparison

Table 2.1 compares the Game-Based Learning (GBL) techniques in Colobot: Gold

Edition, CodeCombat, and Human Resource Machine. It highlights that while

progression systems and challenges are common, strong narrative integration is not

always present, informing the design choices for this project.

19

2.6 Common Features Related to Proposed Project

Several educational games have been developed over the years to support introductory

programming instruction, particularly through Game-Based Learning (GBL)

techniques such as progression systems, challenge-based puzzles, and narrative

elements (Cheong et al., 2020; Qian & Clark, 2019). Three notable examples that align

closely with the proposed project are Colobot: Gold Edition, CodeCombat, Human

Resource Machine. Each of these games provides a unique approach in teaching

programming concepts and has been used in both formal and informal learning

environments. Table 2.2 provides the preview of the game’s look.

Table 2.2 Related GBL games preview image

Colobot: Gold Edition CodeCombat

Human Resource Machine

20

2.6.1 Colobot: Gold Edition

Colobot: Gold Edition is a science fiction-themed game in which players control

programmable robots to colonize alien planets using own C++ like language called

CBOT (Alves & Letouze, 2018). The gameplay involves solving missions that teach

core programming concepts such as loops, conditionals, functions, arrays and object

detection.

The game possesses several key strengths, notably its use of a C++ inspired

language that makes it highly relevant for students transitioning to real-world

programming. Its integration of a strong narrative enhances emotional engagement

and motivation, while the gameplay encourages self-directed exploration, problem-

solving, and a mastery-based progression. Furthermore, it supports community-driven

content creation, which allows educators to extend or customize the game for their

specific classroom needs.

However, the game is not without its limitations. The interface, with its 3D

environment and complex controls, can be overwhelming for beginners. This issue is

compounded by the lack of a structured tutorial system, potentially hindering

accessibility for novice students. Additionally, due to its strong technical focus, the

game may not appeal equally to all learning styles.

Studies show that Colobot: Gold Edition promotes active learning and enhances

understanding of programming logic when integrated into curricula (Alves & Letouze,

2018). Students who engaged with the game reported increased interest in

programming and improved confidence in tackling complex tasks. This is because of

the comprehensive game design as shown in figure 2.7, 2.8, 2.9 and 2.10.

21

 Figure 2.7 Main menu of Colobot: Gold Edition

This figure shows a main menu screenshot from Colobot: Gold Edition. It illustrates how

players interact with the UI system of the game.

Figure 2.8 World design concept of Colobot: Gold Edition

This figure displays the world design of the game, which the users are able to fully explore

and learn on their own.

22

Figure 2.9 Mission menu of Colobot: Gold Edition

This figure presents a mission selection system of the game, players will be able to easily

select which mission to start on first.

Figure 2.10 Program editor to control the robot mechanism

This figure shows the usage of in-game program editor for players to use in completing

the required mission of the game.

23

2.6.2 CodeCombat

CodeCombat is a browser-based game that teaches real Python and JavaScript syntax

by having players write code to solve puzzles and progress through levels (Kroustalli

& Xinogalos, 2021). Each level presents a challenge that must be solved using actual

programming commands, often involving loops, conditionals, and function calls.

The platform's strengths lie in its practical approach to teaching real coding syntax,

making it ideal for students preparing for professional development environments. It

offers immediate feedback, which helps students identify and correct mistakes quickly,

and includes a gamified progression system that increases motivation and persistence.

Furthermore, its effectiveness in reducing cognitive load and improving syntax

understanding has been proven.

Nevertheless, the platform has some limitations, including a minimal narrative

depth that can limit emotional investment compared to more story-driven games.

Some students also found the experience repetitive after completing the core levels,

and its limited gameplay variety could potentially affect long-term engagement.

Research indicates that CodeCombat significantly improves students’ interest in

programming, especially among those who previously found traditional methods

unengaging (Kroustalli & Xinogalos, 2021). However, many students expressed

willingness to continue only if new challenges or narrative elements were introduced.

Figure 2.11, 2.12 , 2.13 and 2.14 shows the overall game structure of this CodeCombat.

24

Figure 2.11 World selection map inside of CodeCombat

This figure displays the world selection map in CodeCombat, showing themed regions

(e.g., "Web Development," "Game Development") with levels marked by progress

indicators. Players can select levels to engage in coding challenges.

Figure 2.12 One of coding mission inside CodeCombat

This figure illustrates a coding mission in CodeCombat, where players write Python code

to solve a puzzle. The interface shows an in-game scene with a character seeking help to

find treasure, alongside a code editor displaying syntax for tasks like finding items,

checking conditions, and moving characters.

25

Figure 2.13 Characters menu of CodeCombat

This figure shows the character selection menu in CodeCombat, where players choose

their avatar for gameplay. The interface displays a character named "Captain Ana Weston,"

along with options to select a programming language (e.g., JavaScript) and save their

choice.

Figure 2.14 Map exploration inside chosen world

This figure depicts the in-game map exploration screen in CodeCombat, showing a

detailed dungeon-like environment with obstacles, pathways, and interactive elements.

The interface includes character controls and mission objectives, allowing players to

navigate and solve coding challenges within the chosen world.

26

2.6.3 Human Resource Machine

Human Resource Machine (HRM) is a puzzle-based game that introduces players to

algorithmic thinking and basic assembly-level logic using a simplified command set

(Heithausen, 2020). Players write programs to move items between input, output

conveyors and memory cells, simulating real-world computational tasks.

The platform's strengths are centered on reinforcing essential skills for beginner

programmers, such as logical reasoning, debugging, and understanding step-by-step

execution. It effectively encourages trial-and-error learning, which supports a deep

conceptual understanding, and its simple interface allows for quick immersion without

the distraction of visual complexity.

However, it has notable limitations, including a lack of real-code integration that

makes it less suitable for students who aim to learn standard programming languages

like C++. Additionally, its minimal narrative and visual immersion may reduce long-

term engagement, and the platform does not scale well to cover advanced topics or

more complex programming structures.

Despite its simplicity, HRM has been praised for its ability to introduce core

programming logic in an accessible way (Heithausen, 2020). It supports self-paced

learning and encourages optimization through score tracking (e.g., minimizing steps

or commands), which motivates players to refine their solutions. Figure 2.15, 2.16,

2.17, and 2.18 shows the great game and world design of for a coding-style game

implementation.

27

Figure 2.15 Human Resource Machine storyline and dialog system

This figure illustrates the storyline and dialog system in Human Resource Machine. It

shows a character speaking with a speech bubble that reads, "I have your photo here.

Which one is yours?" Below the dialogue, four framed portraits are displayed, suggesting

a choice-based interaction or puzzle element central to the game's narrative and gameplay

mechanics.

Figure 2.16 Level design of Human Resource Machine stage

This figure depicts the grid-based level design in Human Resource Machine, showing a

workspace with numbered tiles and commands like copy_from and jump, illustrating the

game's procedural programming mechanics.

28

Figure 2.17 Mission challenges of Human Resource Machine

This figure illustrates a mission challenge in Human Resource Machine, displaying a task

titled "Sta Challenge" with objectives like using 10 or fewer commands and completing

the task quickly. The interface includes options to return or continue, highlighting the

game's focus on efficiency and problem-solving.

Figure 2.18 Levels progression of Human Resource Machine

This figure shows the levels progression map in Human Resource Machine, featuring a

network of interconnected stages such as "Inventory Report," "String Reverse," and

"Cumulative Countdown." The layout illustrates the structured, branching progression

system that guides players through increasingly complex programming challenges.

29

2.6.4 Features Comparison of Related Game-Based Learning Games

Table 2.3 Comparison to other Related GBL Games

Table 2.3 briefly compares key features of Colobot, CodeCombat, Human Resource

Machine, and Code[X]:Nexus, focusing on gameplay, programming language,

accessibility, target audience, and evaluation approach.

30

2.7 Highlight the Chosen Techniques & Features with Justification

The design of this proposed project is based on research-backed Game-Based

Learning (GBL) techniques and features that have been shown to enhance student

engagement, motivation and learning outcomes, particularly in introductory

programming education (Qian & Clark, 2019; van Gaalen et al., 2021). Based on

findings from related educational games such as Cobot: Gold Edition, CodeCombat

and Human Resource Machine, one core technique and three key features were

selected for implementation:

1) Chosen Techniques

• Narrative and Storytelling

Justification: Research shows that narrative elements increase emotional

investment, contextual understanding, and memory recall in students (Kucher,

2021). In programming education, stories help frame abstract concepts within

relatable scenarios, improving motivation and long-term interest (Cheong et al.,

2020).

Relevance: A strong storyline will immerse players in a meaningful world where

solving programming challenges is essential to progress. This approach builds on

the success of Colobot: Gold Edition, which uses a science fiction narrative to

teach C++ inspired logic (Alves & Letouze, 2018).

Figure 2.19 Examples of games using own unique system and cutscene to deliver the storylines.

31

By this method as shown in figure 2.19, highlighting visual and dialogue can

enhance the storytelling while providing engaging narratives experiences to

students.

2) Chosen Features

• Narrative Driven Gameplay

Justification: Emotional engagement is a powerful driver of learning. Games that

integrate storylines see higher retention and motivation compared to mechanics-

only designs (Kucher, 2021). Colobot: Gold Edition demonstrates that combining

storytelling with programming tasks increases student interest and self-directed

exploration (Heithausen, 2020).

Relevance: The narrative will provide context and purpose to programming tasks,

helping students understand the importance and practical application of what

they're learning.

Figure 2.20 Examples of games using dialogue for NPC to progress the story.

Figure 2.20 shows characters interactions help a lot in guiding and engaging the

players especially if being directly integrated to the gameplay.

32

Figure 2.21 Examples of direct narration to lead players gameplay direction

When effectively being combined with storytelling, direct narration delivers

seamless gameplay mechanics in guiding players while maintaining immersion as

shown in figure 2.21.

• 2D Top-Down Adventure Game Style

Justification: The 2D top-down adventure genre supports structured exploration

and puzzle-solving while maintaining visual simplicity, making it ideal for

educational purposes (Prensky, 2001). It allows for navigation, clear feedback and

manageable complexity is important factors when teaching beginners.

Relevance: This genre aligns well with the goal of integrating narrative, challenge,

and progression into a cohesive experience tailored for first-year diploma

Computer Science students.

Figure 2.22 Examples of games using 2D top-down pixel art style genre

33

Figure 2.22 demonstrate visual simplicity from this game genre style is effective

for structured gameplay, narrative depth and educational game designed for

beginner leaners.

Figure 2.23 Examples of games using the freedom of art style creation.

Figure 2.23 shows by having the right art style direction easily transform the game

concept into captivating and memorable visual experience, this will also support

game’s mechanics, narratives and theme goals.

• Godot 4 Game Engine

Justification: Godot Engine offers a lightweight, open-source platform suitable

for creating accessible educational games. Its ease of use, cross-platform support,

and flexibility make it ideal for projects targeting educational institutions with

limited resources (Dobroskok et al., 2022).

Relevance: Using Godot enables rapid development and modifiability, supporting

future enhancements or adaptations by educators. Figure 2.24, 2.25 and 2.26 shows

what information and capabilities of Godot Engine.

Figure 2.24 Godot 4 Game Engine Logo

34

Figure 2.25 Godot 4 Game Engine Scene Editor Interface

In figure 2.25, the Godot 4 Engine Scene editor is a visual tool used for designing

and assembling game scenes, allowing placing nodes in a hierarchical structure,

configure their properties, and interactively preview the scene layout and behavior

based on developer’s creativity.

Figure 2.26 Godot 4 Game Engine Code Editor Interface.

In figure 2.26, this is where all mechanics like player movement, collision,

animation and the core of game elements implementation will be done inside of

here. Godot uses its own programming language which is the GDScript, a high-

level, object-oriented, imperative and gradually typed programming language built

specially for Godot Engine.

35

2.8 Summary

This literature review focuses the need for more engaging methods in Computer

Science education, particularly for first-year diploma students who often struggle with

abstract programming concepts. Traditional teaching methods are typically passive

and struggle to sustain interest in topics like algorithms and data structures.

Game-Based Learning (GBL) offers a compelling alternative by incorporating

elements like progression systems, challenges, and storytelling to promote active

learning and motivation. Educational games such as Colobot: Gold Edition,

CodeCombat and Human Resource Machine demonstrate the potential of GBL,

though few effectively combine all key elements.

To fill this gap, the proposed project introduces a narrative-driven 2D top-down

adventure game built with Godot 4 Game Engine. It uses question-based puzzles,

mastery-driven progression, and narrative storytelling to support self-paced learning

of introductory C++ programming.

By blending storytelling, gameplay and interactivity, the proposed project aims to

improve the accessibility and effectiveness of programming education for the first-

year diploma students in Computer Science education.

36

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents the methodology adopted in the design and development of

proposed project. The methodology follows a structured Game Development Life Cycle

(GDLC) approach, ensuring that each phase contributes directly to achieving the

project’s core objectives.

Each phase of the GDLC is aligned with educational goals, ensuring that gameplay

mechanics such as puzzles, progression systems and storytelling are not only

entertaining but also pedagogically sound and technically feasible. This section provides

a concise overview of how the game was conceptualized, designed, implemented, tested

and prepared for release, while emphasizing the use of the Godot Engine v4.4 as the

development platform. The subsequent sections will elaborate on the specific phases of

the GDLC, system architecture and technical requirements.

3.2 Project Methodology

The development of followed a Game Development Life Cycle (GDLC) framework to

ensure alignment with pedagogical goals and technical feasibility. This structured

approach enabled systematic progression from conceptualization to deployment,

ensuring the game meets the needs of first-year Computer Science students. Figure 3.1

shows the project methodology of the game development life cycle.

37

Figure 3.1 Game Development Life Cycle

The project was divided into six iterative phases, as outlined in Table 3.1. Each phase

was tailored to address specific project objectives:

Table 3.1 Project Methodology (GDLC)

Phases Activities Technique/Software Deliverable

Design • Create narrative-

driven storyline

• Map C++ concepts

to gameplay puzzles

• Plan UI/UX

elements

• Canva and

draw.io

• Narrative

design

document

• Scene

layout and

UI/UX

diagrams

Develop /

Re-Develop

• Build game scenes

in Godot Engine

• Script puzzles using

GDScript

• Create assets

(sprites, sounds)

• Godot Engine

v4.4

• GDScript

• Aseprite / Piskel

• Audacity / Bfxr

• Git

• Functional

game

prototype

38

• Test basic

functionality

Evaluate • Review puzzle

accuracy

• Validate with

instructors

• Cross-check against

curriculum

• Excel / Google

Sheets

• Feedback forms

• Revised

learning

content

Test • Conduct alpha

testing

• Collect player

feedback

• Identify bugs

• Measure cognitive

load

• Google Forms

• Trello / Notion

• Playtesting

sessions

• Player

feedback

summary

Review

Release

• Finalize graphics

and audio

• Optimize

performance

• Prepare export

templates

• Write instructions

manual.

• Godot Export

• Performance

profiling tools

• Documentation

editors

• Stable

build for

deployment

Release • Publish on Itch.io

• Distribute to target

users

• Gather usage data

• Monitor feedback

• Web hosting

(Itch.io Page)

• Google Forms

• Deployed

finished

game

version

39

3.2.1 Design

This phase focused on identifying effective Game-Based Learning (GBL) methods. By

integrating narrative storytelling and puzzle-based challenges, the project aimed to

enhance student engagement and comprehension. Drawing from recent research on

GBL’s impact on motivation (Kroustalli & Xinogalos, 2021), the narrative was designed

to contextualize C++ concepts (e.g., variables, loops) within a cohesive storyline. To

achieve this, several key design artifacts were produced, including storyboard drafts,

concept art, and dialogue scripts, ensuring that all gameplay mechanics align with

pedagogical goals to foster a structured yet interactive learning environment.

A. Storyboard and Narrative Flow

Storyboarding was used to visualize the sequence of events, player interactions, and the

integration of learning puzzles within the narrative. A key storyboard sequence, for

example, outlines the player's quest, where they encounter a broken "transformer" and

must use their knowledge of C++ variables to repair it. This process ensures the narrative

pacing and puzzle difficulty are balanced.

40

Figure 3.2 Storyboard Draft for the "Conduit’s Variable" Quest

From the figure 3.2, this storyboard sequence visualizes the "Conduit’s Variable" quest,

which is designed to teach the fundamental C++ concepts of variable declaration and

initialization. It depicts the narrative flow where the player is presented with a problem,

gathers information from the environment and NPCs, and applies their knowledge to

solve a puzzle. This process directly integrates learning (int, string, bool data types) with

gameplay, providing immediate feedback and in-game progression as a reward.

41

B. Concept Art and World Building

To establish the visual identity and atmosphere of “Code[X]:Nexus”, concept art was

developed for the main character and the game world. The 2D top-down pixel art style

was chosen for its clarity and low-performance overhead, ensuring accessibility. The

character design aims to be relatable for students, while the world design combines

elements of a futuristic tech environment with classical adventure game tropes.

Figure 3.3 Concept Art for the Player Character and a Game World Area

Figure 3.3 shows the player character sprite with 23 animation frames (left) and a

concept mockup of "Vector Valley," the starting game area (right).

C. Dialogue and Narrative Integration

Dialogue is a critical component for delivering the narrative and framing the C++

challenges. Scripts were written to be engaging while subtly embedding educational

content. The dialogue not only guides the player through quests but also serves as a hint

system and provides contextual feedback for the puzzles. Below is a sample interaction

where an NPC introduces the concept of for loops.

Table 3.2 Concept of the designed project quest’s dialogues.

Character Dialogue

Professor Ada “Greetings, young lads. This data stream is fragmented. We need to
process every packet, one by one."

Player "How can I do that?"

Professor Ada "Think in cycles. A for loop would be perfect. It can initialize a
counter, set a condition to stop, and increment through each packet.
Can you build the loop structure to fix it?"

42

3.2.2 Develop / Re-Develop

This phase addressed developing a 2D top-down adventure game using the Godot

Engine v4.4. Leveraging Godot’s node-based architecture and GDScript, the game’s

core mechanics includes character movement, quest triggers and puzzle logic were

implemented. Assets like sprites and audio were created using tools like Aseprite and

Audacity, ensuring the game met technical specifications (e.g., low system

requirements) for accessibility in educational settings (Dobroskok et al., 2022). Iterative

development allowed for refinement of gameplay elements, such as interactive dialogue

systems and level transitions, to align with the project’s narrative-driven vision.

3.2.3 Evaluate

This phase aimed to assess the game’s effectiveness. It involved cross-checking puzzle

accuracy against C++ curriculum standards and validating content with instructors. For

example, puzzles on variables and conditionals were reviewed to ensure they accurately

reflected foundational programming concepts, ensuring pedagogical alignment (Holly

et al., 2024). Feedback from educators was used to refine learning modules, directly

supporting the objective of evaluating the game’s instructional value.

A. Evaluation Participants and Activities

The evaluation will involve two key participant groups: Subject Matter Experts (SMEs)

and the project supervisor. The SMEs, comprising a lecturer from the Computer Science

faculty who specialize in teaching introductory C++ programming, will play a critical

role in assessing and validating the pedagogical accuracy and effectiveness of the game’s

content. Their expertise ensures that the educational material aligns with curriculum

standards and learning objectives. Additionally, the project supervisor will oversee the

evaluation process, providing guidance and conducting a final review to confirm the

validity and reliability of the findings before finalizing the assessment outcomes. During

43

the evaluation session, Subject Matter Experts (SMEs) will engage in a guided

walkthrough of the game prototype, during which they will critically review elements

such as in-game puzzles, dialogue, and instructional text to assess their pedagogical

relevance, accuracy, and alignment with introductory C++ programming concepts.

B. Evaluation Criteria

The game’s content will be evaluated using criteria grounded in pedagogical best

practices and the project’s objectives, adapted from models like MEEGA+

(Multidimensional Evaluation of Educational Games Plus). Subject Matter Experts

(SMEs) will assess four key areas, Content Accuracy, Pedagogical Alignment, Clarity

and Comprehensibility, and Engagement Potential. Feedback from this phase will

inform refinements to learning modules and puzzle designs, ensuring the game is both

educationally effective and engaging before student testing begins.

3.2.4 Test

This phase involves alpha testing to evaluate the game’s usability, engagement, and

preliminary learning outcomes. A small group of 15 first-year Computer Science

diploma students will participate in structured playtesting sessions. The evaluation uses

a mixed-methods approach: direct observation of player behavior, a post-session survey

(via Google Forms) with scales and open-ended questions to assess usability,

engagement, and comprehension, and short informal interviews for qualitative insights.

Feedback and identified bugs are logged and prioritized for iteration. This combination

of observation, survey, and interview serves as the primary mechanism to evaluate

engagement.

44

3.2.5 Review & Release Preparation

This phase covers the final review and preparation activities required to create a polished

and stable build of the game for PC deployment. Before creating the final build, a

comprehensive internal review is conducted, which includes a code review for

efficiency, a final asset review for all graphics and audio, a functional review to test all

game mechanics, and a documentation review for the user guide. For release, the game

is prepared for the PC (Windows) platform. This involves using Godot’s export tools to

generate a standalone executable file (.exe) and packaging all necessary assets into a

single .zip file suitable for distribution on platforms like Itch.io. A key activity during

this phase is performance optimization; performance profiling tools are used to reduce

load times and ensure the game is accessible on low-end devices, which is critical for

classroom use. As the release is focused on PC, requirements for other platforms like

the Google Play Store are not applicable. The detailed minimum and recommended

hardware specifications required to run the game are formally outlined later in this

document in Section 3.5.

3.2.6 Release

This phase enabled gathering real-world data on effectiveness. By publishing the game

on platforms like Itch.io Page and distributing it to students, the project collected initial

user feedback to inform future iterations. Metrics like playtime, completion rates and

post-game surveys provided insights into the game’s impact on student motivation and

learning outcomes (Kroustalli & Xinogalos, 2021).

Together, the GDLC phases created a systematic development process that directly

addressed each project objective, from conceptualizing GBL methods to deploying a

functional, engaging educational tool.

45

3.3 Summary of Project Methodology

This section presents a summary of how each phase in the Game Development Life

Cycle (GDLC) aligns with the specific objectives of the proposed project, ensuring that

every stage of development directly supports the educational and technical goals

outlined in Chapter 1 as shown in the table 3.3 for the project methodology summary.

Table 3.3 Summary of Project Methodology

46

As the summary illustrates, the project methodology provides a clear and structured

workflow. Each project objective is systematically mapped to distinct development

phases (from Design to Release) and tied to concrete tasks and deliverables. This

methodical alignment ensures that every development effort is purposefully directed

toward solving the core challenge of student disengagement. By following this

approach, the project ensures the final product is not merely a functional game, but a

cohesive, narrative-driven educational experience designed to improve learning

outcomes for introductory C++ students.

47

3.4 System Architecture

The system architecture of proposed project was designed to ensure a modular,

scalable and pedagogically effective structure that supports both gameplay mechanics

and educational content delivery. The game will be developed using the Godot Engine

v4.4, leveraging its node-based scene system and lightweight performance for

accessibility on low-end systems targeting deployment on Windows PC and HTML5

Web Browser.

The game follows a Node-Based Scene Architecture, a core feature of the Godot

Engine. In this style, each game component (e.g., player, NPC, puzzle) is represented

as a node within a hierarchical scene graph. Nodes encapsulate specific behaviors

(e.g., movement, dialogue) and can be reused across levels, promoting code reusability

and scalability (Dobroskok et al., 2022). This is the native architecture style used in

Godot, where each scene contains a hierarchy of nodes that handle specific roles such

as player movement, dialogue display, puzzle logic, UI elements, and progress

tracking. Each scene can be treated as a self-contained module, which aligns with best

practices in software design and supports reusability and scalability.

This architecture style offers several key functionalities: modular scenes can be reused

across different levels, making it easy to add new puzzles or narrative segments

without disrupting existing code. Additionally, there is a clear separation between

gameplay, UI, and logic layers, which enhances maintainability and scalability. The

design is also lightweight and efficient, ensuring compatibility with low-end systems.

A. User Interface Layer

This layer encompasses all the visual elements the player interacts with, including

menus, the Head-Up Display (HUD), dialogue boxes, and the puzzle interface. It

is built using Godot’s native Control nodes and CanvasItem system. The primary

goal of this layer is to ensure clarity and accessibility, promoting an intuitive

interaction model that is easy for first-year students to grasp and use effectively.

48

B. Game Logic Layer

The Game Logic Layer is the core engine of the gameplay experience, responsible

for managing player input, character movement, the triggering of quests, and

transitions between levels. It utilizes GDScript, a Python-like language chosen for

its simplicity and readability, to script all gameplay events. This layer also includes

state machines to govern NPC behavior and validate puzzle solutions, ensuring the

game world is dynamic and responsive to player actions.

C. Learning Content Layer

This layer directly integrates the educational objectives into the game by

containing embedded C++ programming puzzles that are mapped to specific

curriculum topics. Each puzzle is designed to represent a fundamental concept

such as variables, loops, conditionals, or functions, thereby reinforcing theoretical

knowledge through direct, practical application. The design is inspired by games

like "Human Resource Machine," where players solve algorithmic problems

through visual interaction to foster computational thinking.

D. Narrative Integration Layer

To enhance engagement and provide a contextual framework for learning, the

Narrative Integration Layer weaves the educational content into a compelling

story. It uses story-driven missions and branching dialogue trees to guide the

player's progression through the game. This approach is inspired by successful

educational games that leverage narrative to motivate learners and create a

cohesive, meaningful experience.

E. Data Management Layer

This layer is responsible for the persistence of player information, which includes

tracking progress, saving game states, and logging performance data. This

functionality enables personalized learning paths and allows for effective progress

monitoring. It uses a simple file-based storage system, which eliminates the need

49

for an external database, thereby simplifying deployment and reducing system

overhead. This also provides players with the convenience of resuming gameplay

from their last completed level.

High-Level System Architecture Diagram (Descriptive)

Figure 3.4 System Architecture Design of Proposed Project

Based on Figure 3.4, the System Architecture Design for “Code[X]: Nexus” illustrates

a modular structure centered around the Godot Game Engine. Users launch the Game

Application, which processes game nodes and returns rendered gameplay. The core

System Components are divided into: UI/UX, Learning Content, Game Logic,

Narrative Integration, and Data Management. All game data is persistently stored and

retrieved from Local Storage, ensuring player progress is maintained. The Godot

Engine processes GDScript and scene trees, returning processed game logic and

scenes to the application for display, thus orchestrating the entire game experience.

50

Flowchart Design Diagram

Figure 3.5 Flowchart diagram for the proposed project

Based on Figure 3.5, the operational flow of “Code[X]: Nexus” begins at the start

state, presenting the player with a main menu to initiate a new game, load game, access

in-game options or exit game. The core gameplay unfolds within the gameplay loop,

which can be paused to access menu options for resuming, returning to the main menu

or exiting. Within the loop, event triggers lead to narrative introductions and puzzle

challenges. Successful puzzle completion awards player with points which will leads

in unlocking new area if sufficient points are accumulated. Thus, the game process

concludes at the End state if exiting the game.

51

Use Case Diagram Design Diagram

Figure 3.6 Use case diagram of the proposed project

Based on the Figure 3.6, the use case diagram illustrates how the Player interacts with

the game system to achieve various goals. The Player can manage their game

experience by entering the main menu to start a new game, load a saved one, adjust

options like audio levels, or quit. Once in the Gameplay Loop, the Player actively

engages with the game world by navigating environments, interacting with NPCs

(which may involve dialogue or triggering story events), and experiencing the

narrative. Central to the game's purpose, the Player also solves programming

challenges, providing code solutions and receiving immediate feedback. As they

progress, the Player can unlock new content and track their achievements by viewing

their overall progress, including completed challenges and playtime. Essentially, the

diagram outlines all the key functionalities the game offers to its sole user, the Player.

52

3.5 Hardware and Software Requirements

To ensure broad accessibility and ease of use, “Code[X]:Nexus” was developed with

minimal system requirements in mind, making it suitable for deployment in

educational environments where students may be using low-end devices or shared

computing resources (Tan et al., 2021). The game is designed to run efficiently on

standard classroom computers, personal laptops or tablets. This section outlines both

the software tools used during development and the minimum hardware specifications

required for end-users to play the game. Table 3.4 and 3.5 shows the required software

and hardware requirements needed.

Software Requirements:

Table 3.4 Software Requirements Details

Component Description

Game Engine Built with Godot Engine v4.4, an open-source engine for

rapid prototyping and cross-platform deployment.

Programming

Language

Gameplay logic was implemented in GDScript for its

simplicity and readability.

User Interface Design UI elements such as dialogue boxes, puzzle interfaces

and HUD components were created using Godot’s built-

in node system.

Asset Creation Tools • Piskel and Aseprite for creating pixel art graphics.

• Bfxr and Audacity for sound effects and music.

• Trello and Notion for task tracking and

documentation.

Version Control Git and GitHub were used for version control and

collaboration during development.

Export Targets The final build was exported for two platforms:

• Windows PC

• HTML5 Web Browser

53

Hardware Requirements:

Table 3.5 Hardware Requirements Details

Requirements Minimum Specification Recommended

Specification

Operating

System

Windows 7 SP1 or higher /

Web browser (Chrome,

Firefox, Edge)

Windows 10 (64-bit) or

higher / Modern web

browser (latest versions)

Processor Intel Core i3-2100 or

equivalent (AMD A6-Series or

equivalent)

Intel Core i5-3570 or better

(AMD A8-7410)

RAM 1 GB DDR3 SDRAM 2 GB DDR3 SDRAM

Graphics Integrated graphics card (e.g.,

Intel HD Graphics 2000 or

AMD Radeon HD 6310)

Dedicated GPU not

required; mid-range

integrated GPU (e.g., Intel

UHD Graphics 630/

Radeon HD 7660G)

Storage 200 MB available space on the

primary drive (HDD or SSD)

500 MB available space on

the primary drive (SSD

preferred)

Input Device Keyboard and mouse (PS/2 or

USB)

Keyboard, mouse or

gamepad support (USB)

The minimal requirements reflect the project’s focus on accessibility for first-year

students, many of whom may use low-end devices in classroom settings (Tan et al.,

2021). By supporting both Windows and HTML5, the game can be deployed in labs,

libraries, or at home, aligning with the objective of creating an "anytime, anywhere"

learning tool (Cheong et al., 2020).

54

3.6 Conclusion

This chapter outlined the methodology used in the development of “Code[X]:Nexus”,

a narrative-driven 2D top-down adventure game designed to teach introductory-level

C++ programming to first-year diploma students. The development process followed

a structured Game Development Life Cycle (GDLC), ensuring that each stage starting

from initial design to final release was aligned with both educational goals and

technical feasibility.

Each phase of the GDLC contributed directly to the project's core objectives,

starting with the Design phase, which established a strong foundation for integrating

narrative and learning content. The subsequent Development phase implemented these

ideas using the Godot Engine v4.4, leveraging its accessibility for educational

purposes. Rigorous Evaluation and Testing phases then ensured the learning modules

were accurate, engaging, and appropriately challenging. Finally, the Release phase

made the game available to its target audience, enabling valuable feedback collection

for future improvements.

By following this systematic approach, the proposed project was developed as an

accessible, engaging and educationally meaningful tool that bridges the gap between

traditional instruction and interactive learning. The modular system architecture and

minimal hardware requirements ensure that the game can be used in a variety of

educational environments, including classrooms with limited technological resources.

56

References

Al-Maroof, I. A. J., Al-Emran, M., Al-Shadafan, S., & Al-Ahbabi, S. (2024). A review

of game-based learning in computer science education. International Journal

of Information Management Data Insights, 4(1), 100220.

Alves, J. R. M., & Letouze, P. (2018). The curriculum integration of a course of

“Introduction to Programming Logic” with a serious game – Colobot.

International Journal of Social Science and Humanity, 8(11), 275–280.

https://doi.org/10.18178/IJSSH.2018.V9.974

Arnedo, J., & García Solórzano, D. (2023). Coding is fun: Engaging adult online

learners using programming games. In A. García Holgado & F. J. García

Peñalvo (Eds.), Proceedings TEEM 2022 (pp. 606–614). Springer.

http://doi.org/10.1007/978-981-99-0942-1_63

Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., ... & Pereira, J.

(2016). An update to the systematic literature review of empirical evidence of

the impacts and outcomes of computer games and serious games. Computers

& Education, 94, 178–192. https://doi.org/10.1016/j.compedu.2015.11.003

Chan, H. L., Lin, H. C., & Lee, T. H. (2023). Editorial: New educational technology

and its impact on student-centered learning. Frontiers in Psychology, 14,

1189423.

Cheong, C., Flippou, F., & France, D. (2020). Game-based learning in computing

education: A mapping review. ACM Computing Surveys, 53(4), 1–37.

https://doi.org/10.4018/IJGBL.2020010101

57

Choi, W. C., & Choi, I. C. (2024). Investigating the effect of the serious game

CodeCombat on cognitive load in Python programming education. In

Proceedings of the 2024 IEEE World Engineering Education Conference

(EDUNINE) (pp. 1–10). IEEE.

https://doi.org/10.1109/EDUNINE60625.2024.10500551

de Oliveira, P. F. F., de Oliveira, A. L. M., & de Souza, W. S. L. (2022). Gamification

in programming education: A systematic mapping study. Journal of the

Brazilian Computer Society, 28(1), 1–28.

Dobroskok, I., Tan, A., Bekirogullari, Z., Kurucay, M., & Ivanova, T. (2022). Game

development software tools in higher educational institutions: Experience of

Ukraine, Turkey and Bulgaria. ResearchGate.

https://www.researchgate.net/publication/365574044

Giannakoulas, V., & Xinogalos, S. (2024). When Narratives Meet Algorithms: How

Story-Based Educational Games Transform Learning into a Computational

Adventure. GESS Education.

Heithausen, C. (2020, February 15). A look at "Human Resource Machine" according

to Papert’s ideas. Cologne Game Lab, TH Köln – University of Applied

Sciences. https://www.researchgate.net/publication/361112910

Holly, S., Tan, K. L., & Lim, W. Y. (2024). Gamification in programming education:

A systematic review. IEEE Transactions on Education, 67(2), 123–135.

https://doi.org/10.48550/arXiv.2406.03055

Kucher, T. (2021). Storytelling and decision-making in educational games: Enhancing

memory recall and engagement. Journal of Educational Technology

Development and Exchange, 14(1), 45–60.

58

Kroustalli, C., & Xinogalos, S. (2021). Studying the effects of teaching programming

to lower secondary school students with a serious game: A case study with

Python and CodeCombat. Education and Information Technologies, 26(5),

6069–6095. https://doi.org/10.1007/s10639-021-10596-y

Kalogiannakis, K., Papadakis, S., & Zourmpakis, A. I. (2021). Gamification in science

education. A systematic review of the literature. Education Sciences, 11(1), 22.

https://doi.org/10.3390/educsci11010022

Lozano-Lozano, C., Cárdenas-Robledo, L. A., & Gonzalez-Ramirez, T. (2023). A

serious game to learn the OSI model based on experiential learning. Computer

Applications in Engineering Education, 31(4), 932-953.

Qian, M., & Clark, K. R. (2019). Game-based learning and 21st-century skills: A

review of recent research. Educational Research Review, 27, 1–16.

https://doi.org/10.1016/j.chb.2016.05.023

Tan, S. L., Neill, S., & D’Souza, D. (2021). Motivation and learning in gamified

computer science courses: An exploratory study. Computers & Education

Open, 2, 100050.

van Gaalen, A. E. J., Brouwer, J., Schönrock-Adema, J., Bouwkamp-Timmer, T.,

Jaarsma, A. D. C., & Georgiadis, J. R. (2021). Gamification of health professions

education: A systematic review. Advances in Health Sciences Education, 26, 683-

711. https://doi.org/10.1007/s10459-020-10000-3

https://doi.org/10.3390/educsci11010022

59

Zainuddin, Z., Chu, S. K. W., & Shujahat, M. (2020). Mastery learning in gamified

classrooms: A systematic literature review. Education and Information

Technologies, 25(5), 4525–4549.

