UNIVERSITY TEKNOLOGI MARA

CODE[X]: NEXUS, A NARRATIVE-
DRIVEN 2D TOP-DOWN STYLE
ADVANTURE GAME ABOUT
INTRODUCTORY-LEVEL C++
PROGRAMMING USING GODOT 4

AMIR HAFIZI BIN MUSA

BACHELOR OF COMPUTER SCIENCE (HONS.)

JULY 2025

Universiti Teknologi MARA

Code[X]: Nexus, a Narrative-Driven 2D
Top-Down Style Adventure Game about
C++ Programming using Godot 4

Amir Hafizi Bin Musa

Thesis submitted in fulfillment for
Bachelor of Computer Science (Hons.)
Faculty of Computer and Mathematical Sciences

JULY 2025

SUPERVISOR’S APPROVAL

CODE[X]: NEXUS, A NARRATIVE-DRIVEN 2D TOP-DOWN STYLE
ADVENTURE GAME ABOUT C++ INTRODUCTORY-LEVEL
PROGRAMMING USING GODOT 4

By

AMIR HAFIZI BIN MUSA
2024745815

This thesis was prepared under the direction of thesis supervisor, Ahmad Farid Bin
Najmuddin. It was submitted to the Faculty of Computer and Mathematical Sciences
and was accepted in partial fulfilment of the requirements for the degree of Bachelor
of Computer Science (Hons.).

Approved by:

Ahmad Farid Bin Najmuddin
Thesis Supervisor

JULY 9, 2025

DECLARATION

I certify that this report and the research to which it refers are the product of my own
work and that any ideas or quotation from the work of other people, published or
otherwise are fully acknowledged in accordance with the standard referring practices of
the discipline.

AMIR HAFIZI BIN MUSA
2024745815

JULY 9, 2025

CONTENTS

TABLE OF CONTENTS

SUPERVISOR’S APPROVAL
DECLARATION

TABLE OF CONTENTS
LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

CHAPTER ONE: INTRODUCTION

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Introduction
Background of Study
Problem Statement
Project Objectives
Scope of Study
Significance of Study

Summary

CHAPTER TWO: LITERATURE REVIEW

2.1
2.2
23
24
2.5

Introduction

Overview of Computer Science Education
Overview of Game-Based Learning (GBL)
Specific Description of Game-Based Learning
Techniques in Game-Based Learning

2.5.1 Progression System

2.5.2 Challenge and Quest

2.5.3 Narratives and Storytelling

v

PAGE

il
1ii
v
Vi
vil

viil

0O I WL W W N

11
12
13
14
15
16
17

2.6

2.7
2.8

Common Features Related to Proposed Project

2.6.1
2.6.2
263
2.6.4

Highlight the Chosen Techniques & Features with Justification

Colobot: Gold Edition

CodeCombat

Human Resource Machine

Features Comparison of Related Game-Based

Learning Games

Summary

CHAPTER THREE: METHODOLOGY

3.1 Introduction
3.2 Project Methodology
3.2.1 Design
3.2.2 Develop / Re-Develop
3.2.3 Evaluate
3.2.4 Test
3.2.5 Review & Release Preparation
3.2.6 Release
33 Summary of Project Methodology
3.4 System Architecture
3.5 Hardware and Software Requirements
3.6 Conclusion
REFERENCES

20
21
23
26
29

30
35

36
36
39
42
42
43
44
44
45
47
52
55

56

LIST OF FIGURES

FIGURE

2.1
2.2

23

24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

2.20
2.21
2.22
2.23
2.24

Tree Structure of the Proposed Project

Examples of using leveling up and stage levels selection

as the game's core progression system.

Examples of games using challenges to immerse players

into the game world

Examples of games using quest system to give players goals to pursue
Examples of games using NPC dialogue system for story progression
Examples of games using cutscenes to lock players engagement
Main menu of Colobot: Gold Edition

World design concept of Colobot: Gold Edition

Mission menu of Colobot: Gold Edition

Program editor to control the robot mechanism

World selection map inside of CodeCombat

One of coding mission inside CodeCombat

Characters menu of CodeCombat

Map exploration inside chosen world

Human Resource Machine storyline and dialog system

Level design of Human Resource Machine stage

Mission challenges of Human Resource Machine

Levels progression of Human Resource Machine

Examples of games using own unique system and

cutscene to deliver the storylines.

Examples of games using dialogue for NPC to progress the story.
Examples of direct narration to lead players gameplay direction
Examples of games using 2D top-down pixel art style genre
Examples of games using the freedom of art style creation

Godot 4 Game Engine Logo

vi

PAGE
10
15

16

17
18
22
22
22
23
24
24
25
25
27
27
27
28
30

31
32
32
33
33

2.25
2.26
3.1
3.2
3.3
3.4
3.5
3.6

Godot 4 Game Engine Scene Editor Interface

Godot 4 Game Engine Code Editor Interface

Game Development Life Cycle

Storyboard Draft for the "Conduit's Variable" Quest

Concept Art for the Player Character and a Game World Area
System Architecture Design of Proposed Project

Flowchart diagram for the proposed project

Use case diagram of the proposed project

vil

34
34
37
40
41
49
50
51

LIST OF TABLES

TABLE

2.1 GBL Techniques Comparison

2.2 Related GBL games preview image

2.3 Comparison to other Related GBL Games

3.1 Project Methodology (GDLC)

3.2 Concept of the designed project quest's dialogues
33 Summary of Project Methodology

34 Software Requirements Details

3.5 Hardware Requirements Details

viil

PAGE
18
20
29
37
41
45
52
53

CBOT
CS
GBL
GDLC
HRM
HUD
MEEGA+
NPC
RPGs
SMEs
Ul
UX

LIST OF ABBREVIATIONS

C++ inspired language
Computer Science
Game-Based Learning

Game Development Life Cycle
Human Resource Machine
Head-Up Display
Multidimensional Evaluation of Educational Games Plus
Non-Player Character
Role-Playing Games

Subject Matter Experts

User Interface

User Experience

X

CHAPTER 1

INTRODUCTION

1.1 Introduction

In today's world, the processes of learning and teaching are transforming at a rapid
rate. Conventional methods such as books and lectures are often insufficient to engage
the interest of most students, particularly when it comes to complex subjects like
Computer Science (Al-Maroof et al., 2024). With technology becoming deeply
integrated into our lives, there is an increasing demand for innovative and efficient
ways to learn, one of which is Game-Based Learning (GBL).

GBL exploits the playfulness and interactive nature of computer games to present
learning concepts in an easy and enjoyable manner. This approach can simplify
learning, making it more enjoyable and facilitating an easier understanding of abstract
ideas that otherwise cause problems (de Oliveira, de Oliveira, & de Souza, 2022).
However, while GBL in Computer Science has the potential to reduce or eliminate
study difficulties, it is still not as commonly utilized as it could be in learning games
designed for Computer Science students (Kalogiannakis, Papadakis, & Zourmpakis,
2021).

Briefly, this study will examine how computer games able to aid students in
Computer Science field by giving them a better, interactive way of learning while

contributing to the growing area of educational technology.

1.2 Background of Study

Nowadays, the world is witnessing significant and rapid changes in technology, which
are impacting all aspects of life, including education. With the prevalence of digital
media, online environments, and interactive technologies, the effectiveness of
traditional classroom learning in the 21st century is being called into question. While
textbook and lecture-based learning have been central to formal education for
centuries, contemporary students are increasingly drawn towards interactive,
graphical, and game-like modes of engagement (Kalogiannakis et al., 2021).

In recent years, educational studies have highlighted a widening gap between
traditional teaching methods and the engagement levels of students, particularly in
demanding subjects like Computer Science, History, and Mathematics (Al-Maroof et
al., 2024; Tan, Neill, & D’Souza, 2021). Such subjects often involve sequential
concepts or abstract ideas that can be difficult to grasp and retain in passive learning
environments. Traditional lectures, which are often non-interactive and lack modern
storytelling elements, can leave students feeling bored, demotivated, or confused
(Chan et al., 2023). This has led to the increased adoption of technology in education,
particularly in the form of Game-Based Learning (GBL)

GBL s the application of video games and their mechanics to teach specific skills
or knowledge domains in an interactive and engaging manner. Current research
suggests that learning games have the potential to significantly improve memory
recall, problem-solving abilities, and the motivation to learn (de Oliveira, de Oliveira,
& de Souza, 2022). By combining a story with interactive challenges, learning games
offer a dynamic alternative to standard educational methods. Among different game
genres, 2D top-down style adventure games are ideally suited for educational
experiences because they provide a linear progression that allows developers to
seamlessly incorporate puzzles, narratives, and question-based challenges (van Gaalen
et al., 2021). If designed with care, such games can become effective instruments for
reinforcing learning goals while keeping the player interested and curious. Yet, despite

the established advantages of gamification in education, many institutions continue to

1.3

rely on static content delivery. This disconnect contemporary learning preferences and
conventional educational tools presents an opportunity to investigate new methods
that can improve student learning outcomes.

Thus, this study proposes the development of the project, a 2D Learn & Gain top-
down style adventure video game based on the Godot Engine (v4.4), for university
students studying Computer Science. Interactive puzzle, story, and gamified obstacle
perhaps will help the students to have a more engrossing, stimulating, and effective
learning experience that meets the cognitive and motivational needs of the modern

learner.

Problem Statement

As the world of technology expands, the schooling system needs better ways of
teaching because some of them still use passive methods of teaching like lectures.
Traditional ways of teaching like lectures, textbooks, and slide presentations remain,
but these methods do not necessarily engage students actively or support knowledge
retention, especially in technical fields like Computer Science (Chan et al., 2023).
Most learners, especially the first-year diploma students of university, are
struggling to be interested in Computer Science (Tan, et al., 2021; Holly, et al., 2024).
This is based on the reality that the subject is very analytical and abstract, and is often
delivered in non-interactive and static approaches that are criticized for being too
theoretical (Al-Maroof et al., 2024; Holly et al., 2024). There is also a significant gap
in technology that facilitates individuals to learn in a fun way, for example through
games and stories (Cheong, Flippou & France, 2020). When there is no context,
problem-solving activities, and stories, students may struggle to relate theory to real-

life situations, which can lead to lower motivation and performance (de Oliveira, de

Oliveira, & de Souza, 2022).

Game-Based Learning (GBL) has been one such remedy for these issues by the
incorporation of learning content with engaging mechanics that encourage analytical
thinking, collaboration, and exploration (Kalogiannakis, et al., 2021). However,
though gamified learning solutions have gained growing popularity, most available
solutions are either too simple or not exactly tailored to the requirements of the
Computer Science curriculum (Tan, et al., 2021). In addition, students' varied learning
needs demand experiences that are not only interactive, but narrative, image-centered
and pedagogically designed.

The study by Kucher, T. (2021) conclude that games that have definite stories,
decisions to proceed and associated challenges assisted students in recalling
procedural and theoretical information more effectively than normal tests. No such
tools are being created in tertiary education, particularly for Southeast Asian Computer
Science students (Kucher, T., 2021).

To summarize, students struggle to remain engaged and retain information when
learning Computer Science through traditional methods like lectures and textbooks.
Existing game-based learning software often fails to address this, being either too
broad or lacking the specific, structured content required for the subject. Consequently,
there is a scarcity of interactive, story-driven educational games that are specifically
mapped to the curriculum of first-year university diploma courses in computer science.
This continuous lack of innovative tools negatively impacts students' motivation,

engagement, and overall performance in their technical courses.

14

1.5

Project Objectives

To address the problem of student motivation and knowledge retention in Computer
Science learning, this project aims to design a 2D Learn & Gain Top-down Style
Adventure Game for first-year university diploma students to extend learning by using
interactive storytelling and lesson gamification. In this respect, objectives are to:
1. To identify an effective game-based learning (GBL) method in programming
education in enhance student motivation.
2. To develop a 2D top-down style learning adventure game, in learning
programming concepts that includes GBL elements using Godot Engine v4.4.
3. To assess the usability of the developed GBL game towards the targeted
students.

Scope of Study

The project will focus on the implementation of Game-Based Learning (GBL) in
Computer Science focusing on programming topics education through a 2D top-down
style adventure game. The project aims to explore on how interactive narrative and
puzzle goes within a top-down game can helps students' interest, improve concept
comprehension, and improve memory recall, especially among university students.
The research investigates on the way of how study content can be more gamitfied and
placed within a context of a narrative. This integrates learning with advancement in a
game in overcoming common problems related to the traditional means of learning.
The proposed solution of the project is able to provide:

e A narrative-driven gameplay experience with progression themed levels

representing variety of fundamental topics in C++ programming field.
e A challenge-based system that enables students lean and progress by

answering questions or solving puzzles in relation to the subject field.

e A visual cues and storytelling elements designed to enhance and improve
students understanding regarding the concept topics such as history and
overview of C++, basic syntax and data types, basic data structures and basic

algorithms.

This project will be developed using the Godot v4.4 game engine, it will be targeted
towards the Windows and Web (HTMLY) platforms for deployment. The game is
designed to be lightweight, has low system specification requirements and easily
accessible via browser or Windows executable file (.exe), while also suitable for both
classroom use or even independent learning. The target users are first-year of diploma
in Computer Science of UiTM who are new to Computer Science or are struggling
with the foundation concept.

The scope of the game's functionality revolves around a single-player, 2D top-
down RPG-style adventure with level-based progression. It is designed to offer a
narrative-driven gameplay experience where levels are themed to represent
fundamental topics in the C++ programming language. The core learning mechanic is
a challenge-based system that allows students to progress by answering questions or
solving puzzles related to their studies. This is supported by visual cues, storytelling
elements, assets, and animations designed to enhance the learning themes. The game
will also feature basic performance tracking, monitoring metrics such as completed
questions and total playtime.

The project is intentionally restricted to introductory-level programming topics.
Specifically, the educational content will cover the history and overview of C++, basic
syntax and data types, basic data structures, and basic algorithms. The target users are
specifically first-year Diploma in Computer Science students at UiTM who are either
new to the field or struggling with foundational concepts. This project will be
developed using the Godot Engine v4.4 and will be targeted for deployment on
Windows and Web (HTMLYS) platforms.

1.6 Significant of Study

With the presented solutions, the significant towards the body of knowledge lies within
the utilization of Game-Based Learning (GBL) principles in Computer Science
education, more precisely the learning of abstract and procedural material by students.
This will help in emerging the area of educational technology and gamification,
showing how narrative-based game environments can enhance learning experiences
and retention rates among students in the related field.

The significance of this study is twofold, first it offers a practical model for the
development of learning games for topic-specific content towards other game
developers and it presents the argument for the value of interactivity, narrative, and
challenge-based progression while fostering student motivation and understanding. In
doing so, it helps bridge the gap between abstract theory and actual practice in an
interesting and easily accessible way.

This study is primarily useful for first-year university diploma computer science
students who struggle with traditional learning, offering them an entertaining and
enjoyable alternative that transforms difficult programming concepts into a more
easily digestible format. It also benefits lecturers, who can utilize the resulting game
as an alternative teaching tool to enhance their lessons, encourage critical thinking,
and introduce variation in classwork. Ultimately, the study aims to provide a
convenient learning environment where students can learn at any time and from
anywhere, thereby promoting self-learning.

Through the integration of narrative and subject-based challenges, the project
demonstrates the ways in which purposeful game design can positively enhance the
practice of education by promoting more effective creation and accessible learning

software in the digital era where we must adapt, not reject.

1.7 Summary

This chapter describes that Computer Science education must be enhanced by
innovative and interactive approaches like Game-Based Learning (GBL).
Conventional teaching cannot hold students’ attention span and interest, particularly if
the subject matter is complicated or abstract in nature, such as in the case ofalgorithms
and binary logics.

Because of this, in order to address this issue, the proposed project will provide
interactive and narrative learning experiences. The purpose of this proposal is to
enhance student engagement and retention by incorporating educational materials
within a gamified system, developed using the Godot Engine v4.4.

The solution scope involves targeting first-year university diploma students with
an emphasis on programming courses at the introductory level through single-player
mode with puzzles and quizzes that are dialogue-based. The study significance
involves the contribution to educational technology through the demonstration that
storytelling, game design, and visual learning can come together to work effectively

in augmenting and supplementing the current model of formal education.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides an overview of current research regarding Game-Based
Learning (GBL) and its implementation in Computer Science education, specifically
in the instruction of introductory programming. This is to lay down a theoretical
background for this project, an interactive 2D top-down adventure game created with
the Godot Engine as an instruction medium of C++ programming for first-year
diploma Computer Science students.

Classical teaching methods lead to disengagement among students since
programming concepts are intangible and decontextualized (Tan et al, 2021).
Educators have subsequently looked for substitute interactive and engaging learning
tools, like games, that promote active learning, problem-solving and engagement
through gameplay mechanics including progression mechanisms, challenges and story
(Qian & Clark, 2019; Cheong et al., 2020).

This literature review aims to explore relevant GBL approaches in education
program games such as Colobot: Gold Edition, CodeCombat and Human Resource
Machine that identifies elements which enabling effective learning process. These will
be utilized to inform design within this project in a way that considers the integration
of actual programming tasks in an interactive story environment that is appropriate for
new students (Kucher, 2021). Figure 2.1 shows the overall tree structure of the

proposed project.

Code[X]:Nexus; a Narrative-driven 2D
Top-Down Style Adventure Game about
Introductory-level C++ Programming using
Godot 4

s

DOMAIN

4

CS Education in
Introductory-level
C++ Programming

v

v

RESEARCH AREA

A

Game-Based Learning

BL)

Technology and

Basic Syntax Data Types Design Elements Development Tools Game-Based Applied Field
P Dimension Design P Game Engine L Education
Basic Algorithm < » Basic Data Structure
P Learning Objectives P Deployment Platform
Game Techniques
Iy Player Interaction b Supporting Resources
Mechanics Tool Narratives and
Storytelling
Feedback and
Assessment Mechanism
l Player Engagement

Strategy

Figure 2.1 Tree Structure of the Proposed Project

10

2.2 Overview of Computer Science Education

Computer Science (CS) education has become a widely viewed technical education in
the modern era, particularly at diploma and undergraduate levels. Nevertheless, it is
documented that many freshman CS students struggle with fundamental programming
concepts, most notably due to the fact that subjects such as variables, loops,
conditionals and object-oriented design are often abstract in nature (Papastergiou,
2009; Holly et al., 2024).

Traditional education heavily relies on methods like lectures, notes, slides,
textbook and coding exercises, which has shown often fail to fully engage students or
provide meaningful context for learning process (Tan et al., 2021). This causes the
drive in having low motivation, poor retention rates, low attention span and high
dropout rates especially among first-year students who are just completely new to
programming (Armedo & Garcia, 2023).

Studies have determined that the majority of students consider programming as
difficult and out of reach, primarily because ideas are taught in isolation without clear
real-world applications (Cheong et al., 2020). In addition, the lack of immediate
feedback and interactivity in conventional settings limits channels for active learning,
trial and error, which required to gain mastery in programming field (Qian & Clark,
2019).

To counter these challenges, educators and research professionals have resorted to
alternative learning strategies, including interactive tools, visual programming
environments and gamified learning systems (Kucher, 2021). All these are designed
to increase access to programming by positioning learning in immersive and
contextualized experiences.

One of the most promising areas is the integration of Game-Based Learning (GBL)
into the teaching of CS. Learning games are structured but enjoyable environments in
which students can learn by trying out, problem-solving and gradually developing
mastery over concepts and representations of intellectual processes employed in actual

programming (van Gaalen et al., 2021). Examples of games such as Colobot: Gold

11

23

Edition, CodeCombat and Human Resource Machine showcase how learning goals
can be transferred to game mechanics to improve participation and comprehension
(Heithausen, 2020).

With the growing demand for skilled programmers and the importance of early
success in shaping students' confidence in CS, there is a strong need to explore new
methods, which aligned with today's digitally native students' demands and learning

patterns (Boyle et al., 2016).

Overview of Game-Based Learning (GBL)

Game-Based Learning (GBL) is the practice of using digital games in learning
contexts to facilitate improved learning outcomes through an interactive and dynamic
experience (Kalogiannakis, et al., 2021). While traditional methods often rely on
passive learning approaches such as reading books and attending lectures, GBL
promotes active engagement by allowing students to tackle problems, receive
immediate feedback, and progress at their own pace (de Oliveira, et al., 2022).

The theoretical foundation of GBL is closely linked to experiential learning, which
posits that learning occurs most effectively when students engage in a concrete
experience, followed by reflection and application (Lozano-Lozano et al., 2023;
Cheong et al., 2020). Computer games inherently support this cycle by immersing
players in challenges that require decision-making, experimentation, and iterative
refinement. Research suggests that games are effective because they align with the
learning patterns of contemporary students, who are accustomed to fast-paced,
visually rich, and interactive digital environments (Chan et al., 2023).

Because of this, it increases the motivation for them, which is a key factor in
student engagement and long-term knowledge retention (Holly et al, 2024).
Furthermore, games can also reduce cognitive load by presenting information in
manageable chunks, allowing the students to build confidence gradually (Choi &
Choi, 2024).

12

24

GBL has shown promises in helping students grasp abstract concepts like loops,
conditionals, functions and object-oriented programming (Tan et al., 2021). Existing
GBL games like Colobot: Gold Edition, CodeCombat and Human Resource Machine
have proved that engaging world building and well-crafted gameplay mechanics,
including progression systems, meaningful challenges and immediate feedback
significantly enhance learning while improving understanding of programming basics
(Amedo & Garcia, 2023; Heithausen, 2020).

Even though GBL will not replace traditional teaching practices, it can be used as
a tool that enhances motivation, promotes self-learning and supports experimentation,
which are key processes in acquiring programming skills (van Gaalen et al., 2021).

These insights lay the foundation for the proposed project, which integrates GBL
elements into a narrative-driven 2D top-down adventure game designed in teaching

introductory-level C++ programming to first-year diploma students.

Specific Description of Game-Based Learning

Game-Based Learning (GBL) goes beyond entertainment by integrating structured
learning objectives into gameplay, which promotes active engagement rather than
passive reception (Kalogiannakis et al., 2021). Games act as interactive systems that
can simulate real-world challenges, promote decision-making, and offer immediate
feedback for key elements that enhance deep learning and retention (Cheong et al.,
2020).

According to recent studies, well-designed educational games boost student
motivation and understanding, particularly for complex or abstract topics like
programming logic and syntax (Al-Maroof et al., 2024). This aligns with experiential
learning theory, which posits that meaningful learning happens through hands-on
experiences, reflection, and application. Digital games naturally facilitate this process
by immersing players in structured challenges that involve problem-solving, trial and
error, and iterative improvement, effectively mirroring real-world programming tasks

(Lozano-Lozano et al., 2023).

13

25

In GBL environments, progressive difficulty, embedded tutorials and storytelling
help students build confidence and competence gradually (van Gaalen et al., 2021).
Games like Colobot: Gold Edition, CodeCombat and Human Resource Machine align
gameplay with learning goals to boost engagement and understanding (Heithausen,
2020; Arnedo & Garcia, 2023). They introduce programming concepts step-by-step,
starting with basic commands, then advancing to loops, conditionals, and functions
(Heithausen, 2020).

GBL supports self-directed learning, letting students explore content at their own
pace and revisit difficult areas without pressure (Kucher, 2021). It also enables
mastery-based progression, requiring a full understanding of one concept before
advancing, which reinforces fundamentals before introducing greater complexity
(Zainuddin at el., 2020).

In introductory-level programming, GBL offers a low-stakes environment where
mistakes are part of learning, not a failure (Choi & Choi, 2024). This is crucial for
first-year diploma students lacking confidence in technical subjects. By presenting
programming as gameplay, students become more open to experimenting, debugging,

and refining code, concluding the key skills in software development.

Techniques in Game-Based Learning

Game-Based Learning (GBL) relies on a variety of engagement-enhancing techniques
that promote motivation, knowledge retention and problem-solving skills. Among the
most impactful are progression systems, challenge-based puzzles and narrative-driven
storytelling (van Gaalen et al., 2021). These techniques are particularly effective in
educational contexts such as introductory programming instruction, where abstract

concepts can be difficult for students to grasp without meaningful context or structured

support (Al-Maroof et al., 2024).

14

2.5.1 Progression System

A progression system is a game design mechanism that allows players to advance
through increasing levels of difficulty, often unlocking new abilities, tools, or content
along the way (Cheong et al., 2020). In educational settings, progression systems help
enhances learning by gradually introducing new challenges while reinforcing
previously acquired knowledge (Zainuddin et al., 2020). This approach aligns with
mastery-based learning, where students must demonstrate understanding before
moving to more complex topics.

In programming education, this structure mirrors how coding concepts are
typically introduced, starting with basic syntax and logic before progressing to loops,
conditionals, functions, and object-oriented principles (Amedo & Garcia, 2023).
Games like Colobot: Gold Edition and CodeCombat use level-based progression to
guide players through increasingly complex programming tasks, making them ideal
models for this project (Heithausen, 2020). Figure 2.2 show the example usage of

leveling system as the main progression system.

Matthew has reached Level 3!
2 i 2 s)¢
3 > 354 |gHeal ALl g {7 g 5267 g\?

¢ 7

‘NG | Max M 151 & Revive All

) : n g m
= * g7 *n*ﬁ AR g 5267

Matthew > 56

Figure 2.2 Examples of using leveling up and stage levels selection as the game’s core progression

system.

15

2.5.2 Challenge and Quest

Challenge-based gameplay involves presenting students with problems or quests that
require logical reasoning, decision-making, and iterative trial-and-error (Kucher,
2021). Puzzles are one of the most commonly used challenge formats in educational
games, especially those designed for teaching programming fundamentals
(Heithausen, 2020).

Games like Human Resource Machine present players with input-output puzzles
that simulate real-world programming problems (e.g., sorting values, comparing
numbers, managing memory cells), encouraging algorithmic thinking and debugging
skills (van Gaalen et al., 2021). These mechanics not only reinforce technical
knowledge but also foster self-directed exploration, which is essential for mastering
complex subjects like programming (Choi & Choi, 2024). Figure 2.3 shows the usage

of challenges system, meanwhile figure 2.4 shows the example of quest system.

_
@ . gesitl Moon Ballas

Qutfit Categorization Unique Designs
Master

Collect RagoPiece

A ./

Pursuit! Collector of
‘Wonders

Colect Stylish Outlits

My Clothes are Amazing

Collect Ability Outfits

Purify! The Scent in the Cavern 0s of Jinzhou Solitary Path

Indicated location

Figure 2.4 Examples of games using quest system to give players goals to pursue

16

2.5.3 Narratives and Storytelling

Narrative elements provide emotional engagement and contextual meaning to
gameplay, making them powerful tools for enhancing motivation and memory recall
(Kucher, 2021). In educational games, stories help frame abstract problems within
relatable scenarios, allowing players to better understand the relevance and application
of what they're learning (Cheong et al., 2020).

For example, Colobot: Gold Edition immerses players in a science fiction storyline
where they must program robots to colonize alien planets using a C++ inspired
language called CBOT (Alves & Letouze, 2018). This narrative-driven approach
increases student investment and encourages deeper cognitive processing of
programming concepts (Giannakoulas & Xinogalos, 2024).

While some educational games like CodeCombat focus more on mechanics than
story, research suggests that adding strong narrative components significantly
enhances both emotional engagement and long-term interest in learning (van Gaalen
et al., 2021). This shapes the proposed project’s design, uniting all three techniques
within a cohesive, narrative-driven experience. Figure 2.5 shows the usage of narrative

dialogue system, meanwhile figure 2.6 shows the usage of narrative cutscenes.

B aof -

Milly)T v

No kidding? | guess you're braver
than | gave you credit for.

Figure 2.6 Examples of games using cutscenes to lock players engagement

17

2.5.4 Techniques Comparison

Table 2.1 GBL Techniques Comparison

Progression System

Challenge And Quest

Narratives And
Storytelling

Definition

Educational
Impact

Engagement
Level

Complexity

Relevance to
Programming
Education

Examples in
Educational
Games

Limitations

Players advance through
increasing levels of
difficulty, unlocking new
content or abilities.

Promotes mastery-based
learning; reinforces prior
knowledge before
introducing complexity.

- High

Players feel a sense of
achievement as they
progress.

Moderate

Supports gradual
introduction of
programming concepts
(e.g., syntax, logic,
functions).

CodeCombat, Colobot

May become repetitive if
not paired with variety.

Players solve problems
or quests requiring
logical reasoning and
problem-solving.

Encourages
algorithmic thinking,
debugging, and
iterative learning.

- High

Challenges stimulate
curiosity and
persistence.

Moderate to High

Reinforces problem-
solving and logical
reasoning essential for
coding.

HRM, CodeCombat

Can frustrate learners
if too difficult or
unclear.

Players engage with a
storyline that provides
emotional context and
immersion.

Enhances memory
recall, contextual
understanding, and
emotional investment.

- Very High

MNarrative increases
emotional connection
and long-term interest.

High

Helps contextualize
abstract concepts within
relatable scenarios.

Colobot, HRM,
CodeCombat

Time-consuming and
may distract from core
learning.

Table 2.1 compares the Game-Based Learning (GBL) techniques in Colobot: Gold

Edition, CodeCombat, and Human Resource Machine. It highlights that while

progression systems and challenges are common, strong narrative integration is not

always present, informing the design choices for this project.

18

2.6 Common Features Related to Proposed Project

Several educational games have been developed over the years to support introductory
programming instruction, particularly through Game-Based Learning (GBL)
techniques such as progression systems, challenge-based puzzles, and narrative
elements (Cheong et al., 2020; Qian & Clark, 2019). Three notable examples that align
closely with the proposed project are Colobot: Gold Edition, CodeCombat, Human
Resource Machine. Each of these games provides a unique approach in teaching
programming concepts and has been used in both formal and informal learning

environments. Table 2.2 provides the preview of the game’s look.

Table 2.2 Related GBL games preview image

Gold Edltlon :
PIanB

Colobot: Gold Edition CodeCombat

MACHING,

Human Resource Machine

19

2.6.1 Colobot: Gold Edition

Colobot: Gold Edition is a science fiction-themed game in which players control
programmable robots to colonize alien planets using own C++ like language called
CBOT (Alves & Letouze, 2018). The gameplay involves solving missions that teach
core programming concepts such as loops, conditionals, functions, arrays and object
detection.

The game possesses several key strengths, notably its use of a C++ inspired
language that makes it highly relevant for students transitioning to real-world
programming. Its integration of a strong narrative enhances emotional engagement
and motivation, while the gameplay encourages self-directed exploration, problem-
solving, and a mastery-based progression. Furthermore, it supports community-driven
content creation, which allows educators to extend or customize the game for their
specific classroom needs.

However, the game is not without its limitations. The interface, with its 3D
environment and complex controls, can be overwhelming for beginners. This issue is
compounded by the lack of a structured tutorial system, potentially hindering
accessibility for novice students. Additionally, due to its strong technical focus, the

game may not appeal equally to all learning styles.

Studies show that Colobot: Gold Edition promotes active learning and enhances
understanding of programming logic when integrated into curricula (Alves & Letouze,
2018). Students who engaged with the game reported increased interest in
programming and improved confidence in tackling complex tasks. This is because of

the comprehensive game design as shown in figure 2.7, 2.8, 2.9 and 2.10.

20

Figure 2.7 Main menu of Colobot: Gold Edition

This figure shows a main menu screenshot from Colobot: Gold Edition. 1t illustrates how

players interact with the Ul system of the game.

Research center

Figure 2.8 World design concept of Colobot: Gold Edition

This figure displays the world design of the game, which the users are able to fully explore

and learn on their own.

21

1: Leaving Earth

2: On the Moon

Develop flying bots to access essential raw material on the broken Moon
surface.

Figure 2.9 Mission menu of Colobot: Gold Edition

This figure presents a mission selection system of the game, players will be able to easily

select which mission to start on first.

[Program editor

Figure 2.10 Program editor to control the robot mechanism

This figure shows the usage of in-game program editor for players to use in completing

the required mission of the game.

22

2.6.2 CodeCombat

CodeCombat is a browser-based game that teaches real Python and JavaScript syntax
by having players write code to solve puzzles and progress through levels (Kroustalli
& Xinogalos, 2021). Each level presents a challenge that must be solved using actual
programming commands, often involving loops, conditionals, and function calls.

The platform's strengths lie in its practical approach to teaching real coding syntax,
making it ideal for students preparing for professional development environments. It
offers immediate feedback, which helps students identify and correct mistakes quickly,
and includes a gamified progression system that increases motivation and persistence.
Furthermore, its effectiveness in reducing cognitive load and improving syntax
understanding has been proven.

Nevertheless, the platform has some limitations, including a minimal narrative
depth that can limit emotional investment compared to more story-driven games.
Some students also found the experience repetitive after completing the core levels,

and its limited gameplay variety could potentially affect long-term engagement.

Research indicates that CodeCombat significantly improves students’ interest in
programming, especially among those who previously found traditional methods
unengaging (Kroustalli & Xinogalos, 2021). However, many students expressed
willingness to continue only if new challenges or narrative elements were introduced.

Figure 2.11,2.12,2.13 and 2.14 shows the overall game structure ofthis CodeCombat.

23

CODE COMBRY

pr. A\ —
Wi DEVELOPMENT{0/13 = Wes D
N 5

PLAY

KITHGARD DUNGEON
21/47

PLAY

Sy, iethods, prrmeles.
strings, (00ps, vanabies

1 e o 0 Bk Y O B

Figure 2.11 World selection map inside of CodeCombat

This figure displays the world selection map in CodeCombat, showing themed regions

(e.g., "Web Development," "Game Development") with levels marked by progress

indicators. Players can select levels to engage in coding challenges.

SIGNS AND PORTENTS

1 kg -
2 ind ang Collect the ¢

‘3 // The g¢
var
5 giant o hero

reasure,

th bregkipg

"eStFriendcy things,

75 while Cerygy ¢ ;
8 Var jtey o he
9 (/ If j¢r

S bre,
I (it
10 em. isp,
he, reakab

§ fore collecs;

hero., == "Chestn Ecting tp,

} ses““("pickloc“t "M tﬂ.isf_“:"
"9", item), ed) ¢

Figure 2.12 One of coding mission inside CodeCombat

This figure illustrates a coding mission in CodeCombat, where players write Python code
to solve a puzzle. The interface shows an in-game scene with a character seeking help to
find treasure, alongside a code editor displaying syntax for tasks like finding items,

checking conditions, and moving characters.

24

CHoose Your Hero

6888 8aaaala

Caprain Anya Weston

ense keader who s afraid 10 go in and get

Dase. of picking up shiny things.

Which programming language do you want to use?

| savascreer

Figure 2.13 Characters menu of CodeCombat

This figure shows the character selection menu in CodeCombat, where players choose
their avatar for gameplay. The interface displays a character named "Captain Ana Weston,"
along with options to select a programming language (e.g., JavaScript) and save their

choice.

R
QQBE QQMBA‘ ‘ Kunn:(on/gincmu j

P 0 Leve 1 131 Anovmous Paver IIBERIN | seie’

Figure 2.14 Map exploration inside chosen world

This figure depicts the in-game map exploration screen in CodeCombat, showing a
detailed dungeon-like environment with obstacles, pathways, and interactive elements.
The interface includes character controls and mission objectives, allowing players to

navigate and solve coding challenges within the chosen world.

25

2.6.3 Human Resource Machine

Human Resource Machine (HRM) is a puzzle-based game that introduces players to
algorithmic thinking and basic assembly-level logic using a simplified command set
(Heithausen, 2020). Players write programs to move items between input, output
conveyors and memory cells, simulating real-world computational tasks.

The platform's strengths are centered on reinforcing essential skills for beginner
programmers, such as logical reasoning, debugging, and understanding step-by-step
execution. It effectively encourages trial-and-error learning, which supports a deep
conceptual understanding, and its simple interface allows for quick immersion without
the distraction of visual complexity.

However, it has notable limitations, including a lack of real-code integration that
makes it less suitable for students who aim to learn standard programming languages
like C++. Additionally, its minimal narrative and visual immersion may reduce long-
term engagement, and the platform does not scale well to cover advanced topics or

more complex programming structures.

Despite its simplicityy, HRM has been praised for its ability to introduce core
programming logic in an accessible way (Heithausen, 2020). It supports self-paced
learning and encourages optimization through score tracking (e.g., minimizing steps
or commands), which motivates players to refine their solutions. Figure 2.15, 2.16,
2.17, and 2.18 shows the great game and world design of for a coding-style game

implementation.

26

Figure 2.15 Human Resource Machine storyline and dialog system

This figure illustrates the storyline and dialog system in Human Resource Machine. It
shows a character speaking with a speech bubble that reads, "I have your photo here.
Which one is yours?" Below the dialogue, four framed portraits are displayed, suggesting
a choice-based interaction or puzzle element central to the game's narrative and gameplay

mechanics.

il
1 1
s
=
-
ol
"‘\

Figure 2.16 Level design of Human Resource Machine stage

This figure depicts the grid-based level design in Human Resource Machine, showing a
workspace with numbered tiles and commands like copy from and jump, illustrating the

game's procedural programming mechanics.

27

chalenges can bo very diffcult! And in
. many cases,
Nzo both simultaneously with one solufion.

Figure 2.17 Mission challenges of Human Resource Machine

This figure illustrates a mission challenge in Human Resource Machine, displaying a task
titled "Sta Challenge" with objectives like using 10 or fewer commands and completing
the task quickly. The interface includes options to return or continue, highlighting the

game's focus on efficiency and problem-solving.

Inventory Report

String Reverse ‘.'!\

String Storage Floor ,

*

Storage Floor

Three Sort Midnight Petroleum

Cumulative Countdown

The Littlest Number

Figure 2.18 Levels progression of Human Resource Machine

This figure shows the levels progression map in Human Resource Machine, featuring a
network of interconnected stages such as "Inventory Report," "String Reverse," and
"Cumulative Countdown." The layout illustrates the structured, branching progression

system that guides players through increasingly complex programming challenges.

28

2.6.4 Features Comparison of Related Game-Based Learning Games

Games /
Features

Overview

Characteristics

Goal

Game
Dimension

Game Engine

Features

Accessibility

Suitability

Methodology
Used

Evaluation
Model

Table 2.3 Comparison to other Related GBL Games

Colobot: Gold Edition

A 3D sci-fi strategy game
where players program
robots to solve puzzles and
complete missions. Available
for download on multiple
platforms.

- Strategy/Adventure genre
- Medium play duration

- Continuity across missions
- Programming-based
gameplay

- Story-driven narrative

Players program robot units
using CBOT, a C++ like
language to solve complex
problems and progress
through missions in a
futuristic world.

3D

Colobot Engine (Custom)

- Single-player/Multiplayer
- Robotic programming
interface

- Mission-based progression
- Storyline-driven objectives
- Teamwork mechanics (in
multiplayer)

Available for download on
Windows, macOS, Linux, and
Android.

Students and hobbyists
interested in robotics and
programming.

- Programming Challenges
- Mission-Based Objectives
- Strategic Planning

- Robotic Simulation

Kearney and Pivec's
Educational Game
Framework

CodeCombat

An online browser-based
coding game that teaches
programming through
interactive challenges and
quests. Focuses on
JavaScript, Python, and
other languages.

- Puzzle/Adventure genre
- Short to medium play
duration

- Continuity across levels
- Code editor integration
- Quest-driven narrative

Players learn programming
by writing code to control
characters and solve
challenges in a fantasy
setting.

2D

Custom In-House Browser-
Based Engine

- Single-player/Multiplayer
- Real-time code editor

- Quest-driven progression
- Level-based challenges

- Collaborative features (in
multiplayer)

Browser-based, accessible
via any device with internet
access.

Learners of all ages who
want to learn programming
in a fun way.

- Interactive Coding
Challenges

- Immediate Feedback
- Quest-Driven Learning
- Collaborative Play

Serious Game Constructivist
Framework

Human Resource

Machine

A visual programming
puzzle game set in a
corporate office
environment. Players use
assembly-like commands to
automate tasks involving
moving data between
inbox/outbox and memory
spaces.

- Puzzle genre

- Short play duration

- Independent puzzles
- Assembly language
metaphor

- Minimal narrative

Automate repetitive office
tasks using a simple
instruction set to solve
puzzles based on assembly
language principles.

2D

Tomorrow Corporation
Custom Engine

- Single-player

- Drag-and-drop command
interface

- Optimization challenges

- Step-by-step debugging
- Assembly language
metaphor

Available on PC, Mac, Linux,
i0S, Android, and Nintendo
Switch.

Beginner to intermediate
programmers interested in
low-level computing
concepts.

- Visual Programming

- Assembly Language
Metaphor

- Puzzle Solving

- Optimization Challenges

Constructivist Learning
Framework

Code[X]:Nexus
(Own Designed
Project)

Interactive, narrative-driven
2D top-down adventure
game teaching introductory
C++ concepts using Godot
Engine v4.4. Deployed on
Windows and Web (HTML5).

- Adventure genre

- Long play duration

- Continuity across levels

- Puzzle-based

- Dialogue-driven narrative

Players learn and reinforce
C++ fundamentals by
solving puzzles, completing
quests, and interacting with
NPCs.

2D

Godot Engine v4.4

- Single-player

- Narrative-driven storyline
- Mini-code editors for
simple syntax practice

- Progression system based
on C++ topics

- Visual storytelling
elements

Deployable on Windows
and Web (HTMLS), ensuring
accessibility across devices.

First-year diploma
Computer Science students
struggling with traditional
teaching methods.

- Puzzle-Based Leamning

- Level-Based Progression
- Question & Feedback
System

- Narrative Integration

- Visual Learning Aids

MEEGA+ (Multidimensional
Evaluation of Educational
Games Plus)

Table 2.3 briefly compares key features of Colobot, CodeCombat, Human Resource

Machine, and Code[X]:Nexus, focusing on gameplay, programming language,

accessibility, target audience, and evaluation approach.

29

2.7 Highlight the Chosen Techniques & Features with Justification

The design of this proposed project is based on research-backed Game-Based

Learning (GBL) techniques and features that have been shown to enhance student

engagement, motivation and learning outcomes, particularly in introductory

programming education (Qian & Clark, 2019; van Gaalen et al., 2021). Based on

findings from related educational games such as Cobot: Gold Edition, CodeCombat

and Human Resource Machine, one core technique and three key features were

selected for implementation:

1) Chosen Techniques

Narrative and Storytelling

Justification: Research shows that narrative elements increase emotional
investment, contextual understanding, and memory recall in students (Kucher,
2021). In programming education, stories help frame abstract concepts within
relatable scenarios, improving motivation and long-term interest (Cheong et al.,

2020).

Relevance: A strong storyline will immerse players in a meaningful world where
solving programming challenges is essential to progress. This approach builds on
the success of Colobot: Gold Edition, which uses a science fiction narrative to

teach C++ inspired logic (Alves & Letouze, 2018).

Figure 2.19 Examples of games using own unique system and cutscene to deliver the storylines.

30

By this method as shown in figure 2.19, highlighting visual and dialogue can
enhance the storytelling while providing engaging narratives experiences to

students.

2) Chosen Features

e Narrative Driven Gameplay
Justification: Emotional engagement is a powerful driver of learning. Games that
integrate storylines see higher retention and motivation compared to mechanics-
only designs (Kucher, 2021). Colobot: Gold Edition demonstrates that combining
storytelling with programming tasks increases student interest and self-directed

exploration (Heithausen, 2020).

Relevance: The narrative will provide context and purpose to programming tasks,
helping students understand the importance and practical application of what

they're learning.

. N W M N N —"

Figure 2.20 Examples of games using dialogue for NPC to progress the story.

Figure 2.20 shows characters interactions help a lot in guiding and engaging the

players especially if being directly integrated to the gameplay.

31

.
_) Could we do this without the hat this time?

Figure 2.21 Examples of direct narration to lead players gameplay direction

When effectively being combined with storytelling, direct narration delivers
seamless gameplay mechanics in guiding players while maintaining immersion as

shown in figure 2.21.

2D Top-Down Adventure Game Style

Justification: The 2D top-down adventure genre supports structured exploration
and puzzle-solving while maintaining visual simplicity, making it ideal for
educational purposes (Prensky, 2001). It allows for navigation, clear feedback and

manageable complexity is important factors when teaching beginners.

Relevance: This genre aligns well with the goal of integrating narrative, challenge,
and progression into a cohesive experience tailored for first-year diploma

Computer Science students.

’ -l““’

NN BN gy uyy uy.

ey

Figure 2.22 Examples of games using 2D top-down pixel art style genre

32

Figure 2.22 demonstrate visual simplicity from this game genre style is effective
for structured gameplay, narrative depth and educational game designed for

beginner leaners.

Figure 2.23 Examples of games using the freedom of art style creation.
Figure 2.23 shows by having the right art style direction easily transform the game
concept into captivating and memorable visual experience, this will also support

game’s mechanics, narratives and theme goals.

Godot 4 Game Engine

Justification: Godot Engine offers a lightweight, open-source platform suitable
for creating accessible educational games. Its ease of use, cross-platform support,
and flexibility make it ideal for projects targeting educational institutions with
limited resources (Dobroskok et al., 2022).

Relevance: Using Godot enables rapid development and modifiability, supporting
future enhancements or adaptations by educators. Figure 2.24,2.25 and 2.26 shows

what information and capabilities of Godot Engine.

L
GODOT

Game engine

Figure 2.24 Godot 4 Game Engine Logo

33

oo or L
“ h];D]]p_uH &

-
—

Figure 2.25 Godot 4 Game Engine Scene Editor Interface
In figure 2.25, the Godot 4 Engine Scene editor is a visual tool used for designing
and assembling game scenes, allowing placing nodes in a hierarchical structure,
configure their properties, and interactively preview the scene layout and behavior

based on developer’s creativity.

[2D %3D FScript XGame & Assetlib

Figure 2.26 Godot 4 Game Engine Code Editor Interface.

In figure 2.26, this is where all mechanics like player movement, collision,
animation and the core of game elements implementation will be done inside of
here. Godot uses its own programming language which is the GDScript, a high-
level, object-oriented, imperative and gradually typed programming language built

specially for Godot Engine.

34

2.8 Summary

This literature review focuses the need for more engaging methods in Computer
Science education, particularly for first-year diploma students who often struggle with
abstract programming concepts. Traditional teaching methods are typically passive
and struggle to sustain interest in topics like algorithms and data structures.

Game-Based Learning (GBL) offers a compelling alternative by incorporating
elements like progression systems, challenges, and storytelling to promote active
learning and motivation. Educational games such as Colobot: Gold Edition,
CodeCombat and Human Resource Machine demonstrate the potential of GBL,
though few effectively combine all key elements.

To fill this gap, the proposed project introduces a narrative-driven 2D top-down
adventure game built with Godot 4 Game Engine. It uses question-based puzzles,
mastery-driven progression, and narrative storytelling to support self-paced learning
of introductory C++ programming.

By blending storytelling, gameplay and interactivity, the proposed project aims to
improve the accessibility and effectiveness of programming education for the first-

year diploma students in Computer Science education.

35

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter presents the methodology adopted in the design and development of
proposed project. The methodology follows a structured Game Development Life Cycle
(GDLC) approach, ensuring that each phase contributes directly to achieving the
project’s core objectives.

Each phase ofthe GDLC is aligned with educational goals, ensuring that gameplay
mechanics such as puzzles, progression systems and storytelling are not only
entertaining but also pedagogically sound and technically feasible. This section provides
a concise overview of how the game was conceptualized, designed, implemented, tested
and prepared for release, while emphasizing the use of the Godot Engine v4.4 as the
development platform. The subsequent sections will elaborate on the specific phases of

the GDLC, system architecture and technical requirements.

3.2 Project Methodology

The development of followed a Game Development Life Cycle (GDLC) framework to
ensure alignment with pedagogical goals and technical feasibility. This structured
approach enabled systematic progression from conceptualization to deployment,
ensuring the game meets the needs of first-year Computer Science students. Figure 3.1

shows the project methodology of the game development life cycle.

36

Review
Release

Figure 3.1 Game Development Life Cycle

The project was divided into six iterative phases, as outlined in Table 3.1. Each phase

was tailored to address specific project objectives:

Table 3.1 Project Methodology (GDLC)

Phases Activities Technique/Software Deliverable
Design e C(Create narrative- e Canvaand e Narrative
driven storyline draw.io design
e Map C++ concepts document
to gameplay puzzles e Scene
e Plan U/UX layout and
elements UI/UX
diagrams
Develop / e Build game scenes e Godot Engine e Functional
Re-Develop in Godot Engine v4.4 game
e Script puzzles using | o GDScript prototype
GDScript e Aseprite / Piskel
e C(reate assets e Audacity / Bfxr
(sprites, sounds) o Git

37

Test basic

functionality

Evaluate Review puzzle Excel / Google Revised
accuracy Sheets learning
Validate with Feedback forms content
instructors
Cross-check against
curriculum

Test Conduct alpha Google Forms Player
testing Trello / Notion feedback
Collect player Playtesting summary
feedback sessions
Identify bugs
Measure cognitive
load

Review Finalize graphics Godot Export Stable

Release and audio Performance build for
Optimize profiling tools deployment
performance Documentation
Prepare export editors
templates
Write instructions
manual.

Release Publish on Itch.io Web hosting Deployed
Distribute to target (Ttch.io Page) finished
users Google Forms game
Gather usage data version
Monitor feedback

38

3.2.1 Design

This phase focused on identifying effective Game-Based Learning (GBL) methods. By
integrating narrative storytelling and puzzle-based challenges, the project aimed to
enhance student engagement and comprehension. Drawing from recent research on
GBL’s impact on motivation (Kroustalli & Xinogalos, 2021), the narrative was designed
to contextualize C++ concepts (e.g., variables, loops) within a cohesive storyline. To
achieve this, several key design artifacts were produced, including storyboard drafts,
concept art, and dialogue scripts, ensuring that all gameplay mechanics align with

pedagogical goals to foster a structured yet interactive learning environment.

A. Storyboard and Narrative Flow

Storyboarding was used to visualize the sequence of events, player interactions, and the
integration of learning puzzles within the narrative. A key storyboard sequence, for
example, outlines the player's quest, where they encounter a broken "transformer" and
must use their knowledge of C++ variables to repair it. This process ensures the narrative

pacing and puzzle difficulty are balanced.

39

The Problem The Puzzle Interface

/—— CONDUIT Rt

/ ERROR. Core |

/1 Security passphrase (string)

bool safetylverride = _;

“This is the main power conduit, but

it's offline! We can't get through /) ++ CONOUIT REEBOUT —-
that door without it. an youcheck , conan. core varisbles are
the maintenance terminal? It needs underined:

the correct “initialization codes” to Please define and initialize:

restart” /f Required pouor level (integer)

int poverlLevel = 100;

F|nd|ng the Solution // Security passphrase (aceting
bool safetyOverride = true

// PROTOCOL ACCEPTED... REBOTING...

The Solution & Reward

The safety

manual
Instruction: the Soaldr _tdh:
H Vi
safety manual said e
h id b must be
the override mustbe | .4 ¢,

true and the power | +true and
level needs to be power // PROTOCOL RCCEPTED.. REBOTING
at least 100. needs to

\be 100 .

You did it! That's the power of
proper initialization. You ve
unlocked the way forward.

Figure 3.2 Storyboard Draft for the "Conduit’s Variable" Quest
From the figure 3.2, this storyboard sequence visualizes the "Conduit’s Variable" quest,
which is designed to teach the fundamental C++ concepts of variable declaration and
initialization. It depicts the narrative flow where the player is presented with a problem,
gathers information from the environment and NPCs, and applies their knowledge to
solve a puzzle. This process directly integrates learning (int, string, bool data types) with

gameplay, providing immediate feedback and in-game progression as a reward.

40

B. Concept Art and World Building

To establish the visual identity and atmosphere of “Code[X]:Nexus”, concept art was
developed for the main character and the game world. The 2D top-down pixel art style
was chosen for its clarity and low-performance overhead, ensuring accessibility. The
character design aims to be relatable for students, while the world design combines

elements of a futuristic tech environment with classical adventure game tropes.

Figure 3.3 Concept Art for the Player Character and a Game World Area

Figure 3.3 shows the player character sprite with 23 animation frames (left) and a

concept mockup of "Vector Valley," the starting game area (right).

C. Dialogue and Narrative Integration

Dialogue is a critical component for delivering the narrative and framing the C++
challenges. Scripts were written to be engaging while subtly embedding educational
content. The dialogue not only guides the player through quests but also serves as a hint
system and provides contextual feedback for the puzzles. Below is a sample interaction
where an NPC introduces the concept of for loops.

Table 3.2 Concept of the designed project quest’s dialogues.

Character Dialogue

Professor Ada | “Greetings, young lads. This data stream is fragmented. We need to
process every packet, one by one."

Player "How can I do that?"

Professor Ada | "Think in cycles. A for loop would be perfect. It can initialize a
counter, set a condition to stop, and increment through each packet.
Can you build the loop structure to fix it?"

41

3.2.2 Develop / Re-Develop

This phase addressed developing a 2D top-down adventure game using the Godot
Engine v4.4. Leveraging Godot’s node-based architecture and GDScript, the game’s
core mechanics includes character movement, quest triggers and puzzle logic were
implemented. Assets like sprites and audio were created using tools like Aseprite and
Audacity, ensuring the game met technical specifications (e.g., low system
requirements) for accessibility in educational settings (Dobroskok et al., 2022). Iterative
development allowed for refinement of gameplay elements, such as interactive dialogue

systems and level transitions, to align with the project’s narrative-driven vision.

3.2.3 Evaluate

This phase aimed to assess the game’s effectiveness. It involved cross-checking puzzle
accuracy against C++ curriculum standards and validating content with instructors. For
example, puzzles on variables and conditionals were reviewed to ensure they accurately
reflected foundational programming concepts, ensuring pedagogical alignment (Holly
et al., 2024). Feedback from educators was used to refine learning modules, directly

supporting the objective of evaluating the game’s instructional value.

A. Evaluation Participants and Activities

The evaluation will involve two key participant groups: Subject Matter Experts (SMEs)
and the project supervisor. The SMEs, comprising a lecturer from the Computer Science
faculty who specialize in teaching introductory C++ programming, will play a critical
role in assessing and validating the pedagogical accuracy and effectiveness of the game’s
content. Their expertise ensures that the educational material aligns with curriculum
standards and learning objectives. Additionally, the project supervisor will oversee the
evaluation process, providing guidance and conducting a final review to confirm the

validity and reliability ofthe findings before finalizing the assessment outcomes. During

42

the evaluation session, Subject Matter Experts (SMEs) will engage in a guided
walkthrough of the game prototype, during which they will critically review elements
such as in-game puzzles, dialogue, and instructional text to assess their pedagogical

relevance, accuracy, and alignment with introductory C++ programming concepts.

B. Evaluation Criteria

The game’s content will be evaluated using criteria grounded in pedagogical best
practices and the project’s objectives, adapted from models like MEEGA+
(Multidimensional Evaluation of Educational Games Plus). Subject Matter Experts
(SMEs) will assess four key areas, Content Accuracy, Pedagogical Alignment, Clarity
and Comprehensibility, and Engagement Potential. Feedback from this phase will
inform refinements to learning modules and puzzle designs, ensuring the game is both

educationally effective and engaging before student testing begins.

3.2.4 Test

This phase involves alpha testing to evaluate the game’s usability, engagement, and
preliminary learning outcomes. A small group of 15 first-year Computer Science
diploma students will participate in structured playtesting sessions. The evaluation uses
a mixed-methods approach: direct observation of player behavior, a post-session survey
(via Google Forms) with scales and open-ended questions to assess usability,
engagement, and comprehension, and short informal interviews for qualitative insights.
Feedback and identified bugs are logged and prioritized for iteration. This combination
of observation, survey, and interview serves as the primary mechanism to evaluate

engagement.

43

3.2.5 Review & Release Preparation

This phase covers the final review and preparation activities required to create a polished
and stable build of the game for PC deployment. Before creating the final build, a
comprehensive internal review is conducted, which includes a code review for
efficiency, a final asset review for all graphics and audio, a functional review to test all
game mechanics, and a documentation review for the user guide. For release, the game
is prepared for the PC (Windows) platform. This involves using Godot’s export tools to
generate a standalone executable file (.exe) and packaging all necessary assets into a
single .zip file suitable for distribution on platforms like Itch.io. A key activity during
this phase is performance optimization; performance profiling tools are used to reduce
load times and ensure the game is accessible on low-end devices, which is critical for
classroom use. As the release is focused on PC, requirements for other platforms like
the Google Play Store are not applicable. The detailed minimum and recommended
hardware specifications required to run the game are formally outlined later in this

document in Section 3.5.

3.2.6 Release

This phase enabled gathering real-world data on effectiveness. By publishing the game
on platforms like Itch.io Page and distributing it to students, the project collected initial
user feedback to inform future iterations. Metrics like playtime, completion rates and
post-game surveys provided insights into the game’s impact on student motivation and

learning outcomes (Kroustalli & Xinogalos, 2021).
Together, the GDLC phases created a systematic development process that directly

addressed each project objective, from conceptualizing GBL methods to deploying a

functional, engaging educational tool.

44

3.3 Summary of Project Methodology

This section presents a summary of how each phase in the Game Development Life

Cycle (GDLC) aligns with the specific objectives of the proposed project, ensuring that

every stage of development directly supports the educational and technical goals

outlined in Chapter 1 as shown in the table 3.3 for the project methodology summary.

Table 3.3 Summary of Project Methodology

Objective

Phases

Task

Deliverables

To identify an
effective game-based
learning (GBL)

method in
programming
education in enhance
student motivation

Y

Design]—

O

* Create narrative-
driven storyline.

* Map C++ concepts
to gameplay
puzzles.

* Plan UL'UX
elements.

—

Narrative design
document

Scene layout and
UL'UX diagrams

\
/ Y "/ * Create narrative- \ / Create narrative- \\
driven storyline. driven storyline.
* Map C++ concepts Map C++ concepts
—)[Develop / Re-Develop]—b to gameplay to gameplay
puzzles. puzzles.
s Plan UL'UX Plan UL'UX
\ elements. / \ elements. /
To develop a 2D 'd 'd ™
top-down style ¢ Review puzzle
learning adventure accuracy.))
game, in learning ;[Evaluate]_’ . _\-"a.l;:luatte with CROe;'tleerl:f learning
programming concepts INSITUCTOLS. :
that includes GBL ° f::;zﬁhuzk against
elements using Godot L ’ _ Y.
Engine v4.4
/ * Conduct testing. \ / \
* Collect player
>[Test]», feedback. Player feedback
o Identify bugs summary
& Measure cognitive
load.
\) - AN J

45

f Y 4 » Finalize graphics N |7 N
and audio.
){ " Opimize |« sStable build for
m Review Release]—* performance. B deplovment
To assess the * Prepare export. P03
usability of the * Write instructions
ual.
developed GBL | | . i AN J
game towards the ' ~N | 7 ™
tar ie“"d « Publish on lichio
students + Distribute to target B .
’[Release] N sers N Deploy_ ed finished
* Gather usage data. game version
* Monitor feedback.
. / (N A RN /

As the summary illustrates, the project methodology provides a clear and structured
workflow. Each project objective is systematically mapped to distinct development
phases (from Design to Release) and tied to concrete tasks and deliverables. This
methodical alignment ensures that every development effort is purposefully directed
toward solving the core challenge of student disengagement. By following this
approach, the project ensures the final product is not merely a functional game, but a
cohesive, narrative-driven educational experience designed to improve learning

outcomes for introductory C++ students.

46

3.4 System Architecture

The system architecture of proposed project was designed to ensure a modular,
scalable and pedagogically effective structure that supports both gameplay mechanics
and educational content delivery. The game will be developed using the Godot Engine
v4.4, leveraging its node-based scene system and lightweight performance for
accessibility on low-end systems targeting deployment on Windows PC and HTML5
Web Browser.

The game follows a Node-Based Scene Architecture, a core feature of the Godot
Engine. In this style, each game component (e.g., player, NPC, puzzle) is represented
as a node within a hierarchical scene graph. Nodes encapsulate specific behaviors
(e.g., movement, dialogue) and can be reused across levels, promoting code reusability
and scalability (Dobroskok et al., 2022). This is the native architecture style used in
Godot, where each scene contains a hierarchy of nodes that handle specific roles such
as player movement, dialogue display, puzzle logic, UI elements, and progress
tracking. Each scene can be treated as a self-contained module, which aligns with best

practices in software design and supports reusability and scalability.

This architecture style offers several key functionalities: modular scenes can be reused
across different levels, making it easy to add new puzzles or narrative segments
without disrupting existing code. Additionally, there is a clear separation between
gameplay, UL and logic layers, which enhances maintainability and scalability. The

design is also lightweight and efficient, ensuring compatibility with low-end systems.

A. User Interface Layer
This layer encompasses all the visual elements the player interacts with, including
menus, the Head-Up Display (HUD), dialogue boxes, and the puzzle interface. It
is built using Godot’s native Control nodes and Canvasltem system. The primary
goal of this layer is to ensure clarity and accessibility, promoting an intuitive

interaction model that is easy for first-year students to grasp and use effectively.

47

B. Game Logic Layer
The Game Logic Layer is the core engine of the gameplay experience, responsible
for managing player input, character movement, the triggering of quests, and
transitions between levels. It utilizes GDScript, a Python-like language chosen for
its simplicity and readability, to script all gameplay events. This layer also includes
state machines to govern NPC behavior and validate puzzle solutions, ensuring the

game world is dynamic and responsive to player actions.

C. Learning Content Layer
This layer directly integrates the educational objectives into the game by
containing embedded C++ programming puzzles that are mapped to specific
curriculum topics. Each puzzle is designed to represent a fundamental concept
such as variables, loops, conditionals, or functions, thereby reinforcing theoretical
knowledge through direct, practical application. The design is inspired by games
like "Human Resource Machine," where players solve algorithmic problems

through visual interaction to foster computational thinking.

D. Narrative Integration Layer
To enhance engagement and provide a contextual framework for learning, the
Narrative Integration Layer weaves the educational content into a compelling
story. It uses story-driven missions and branching dialogue trees to guide the
player's progression through the game. This approach is inspired by successful
educational games that leverage narrative to motivate learners and create a

cohesive, meaningful experience.

E. Data Management Layer
This layer is responsible for the persistence of player information, which includes
tracking progress, saving game states, and logging performance data. This
functionality enables personalized learning paths and allows for effective progress

monitoring. It uses a simple file-based storage system, which eliminates the need

48

for an external database, thereby simplifying deployment and reducing system

overhead. This also provides players with the convenience of resuming gameplay

from their last completed level.

High-Level System Architecture Diagram (Descriptive)

User
launch
the game

GAME APFLICATION

HTML

Games
Nodes

SYSTEM COMPONENT (MODULES)

ulrux

Learning Content

Game Logic

Menus

Variables

Player Movement |

<

<
Return game
render

Display
the

gameplay

World View

Loops

Dialog System |

GDScript

Process GDScript
and Scene Tree

Dialog Boxes

Heads-up Display
(HUD)

| Conditionals

Functions

| Quest Manager

Event Trigger |

Narrative Integration

Storyline Delivery

Characters
Interactions

Quest Objectives

Data Management

Save/Load System

Progress Tracking

Completion Log

Load
Progress Data

Save
Progress Data

Local Storage

1O

Return Processed
Game Logic
and Nodes Scene

L
GODOT

Game engine

GAME DEVELOPMENT ENGINE

Figure 3.4 System Architecture Design of Proposed Project

Based on Figure 3.4, the System Architecture Design for “Code[X]: Nexus” illustrates

a modular structure centered around the Godot Game Engine. Users launch the Game

Application, which processes game nodes and returns rendered gameplay. The core

System Components are divided into: UI/UX, Learning Content, Game Logic,

Narrative Integration, and Data Management. All game data is persistently stored and

retrieved from Local Storage, ensuring player progress is maintained. The Godot

Engine processes GDScript and scene trees, returning processed game logic and

scenes to the application for display, thus orchestrating the entire game experience.

49

Flowchart Design Diagram

Display In-game

Display
Starting
Main Menu

‘World Initiation

No

—

le—
Option
Create New Game
Option Environment
New Game
Selgd
Option
Load Game T
Load Last Saved
Exit Checkpoint
Exit Game |«
Ny Tryagainsmint —»| Nemaive
Introduction

Is Puzzle
Correct?

Yes

Loop

Get Points and
Resume Gameplay

Puzzle
Challenge

Save Progress and
Unlock New Area

Gamepl

ay Loop

3

Resume Gameplay

Trigger
Pause
Menu

Yes

Display
Pause Menu Option

Resume Game

Exit Game

Select
Option

Main Menu

Figure 3.5 Flowchart diagram for the proposed project

Based on Figure 3.5, the operational flow of “Code[X]: Nexus” begins at the start

state, presenting the player with a main menu to initiate a new game, load game, access

in-game options or exit game. The core gameplay unfolds within the gameplay loop,

which can be paused to access menu options for resuming, returning to the main menu

or exiting. Within the loop, event triggers lead to narrative introductions and puzzle

challenges. Successful puzzle completion awards player with points which will leads

in unlocking new area if sufficient points are accumulated. Thus, the game process

concludes at the End state if exiting the game.

50

Player

Use Case Diagram Design Diagram

Code[X]: Nexus

Start New Game J------==--- vl\;g‘::;ié?aNf::;s
“eincludes=> 2 <<|nc\udes>v""'r' Move Character
- =<includes>>
Interact with NPC j‘extends”

Gameplay Loop

==includes=>

Solve Puzzle

=<includes=>

==include?i=r Load \ SN
Load Saved Game J~ World Progress
", <<includes>> A‘_ “3(_ Answer Question
®--.._ <<exiends>> s
p Tl =sincludes==
% <=extends>> /4———\

Set Audio Levels

", =<extends>> <<includes=>
/-"‘__“‘-\ " Unlock New
<<exiends>> View Progress N, \‘__A[ji__/

.._=<includes>>

", <<includes>>
<<includes>= r View Completed
f e S S

“{ Trigger Event

Figure 3.6 Use case diagram of the proposed project
Based on the Figure 3.6, the use case diagram illustrates how the Player interacts with
the game system to achieve various goals. The Player can manage their game
experience by entering the main menu to start a new game, load a saved one, adjust
options like audio levels, or quit. Once in the Gameplay Loop, the Player actively
engages with the game world by navigating environments, interacting with NPCs
(which may involve dialogue or triggering story events), and experiencing the
narrative. Central to the game's purpose, the Player also solves programming
challenges, providing code solutions and receiving immediate feedback. As they
progress, the Player can unlock new content and track their achievements by viewing
their overall progress, including completed challenges and playtime. Essentially, the

diagram outlines all the key functionalities the game offers to its sole user, the Player.

51

3.5 Hardware and Software Requirements

To ensure broad accessibility and ease of use, “Code[X]:Nexus” was developed with
minimal system requirements in mind, making it suitable for deployment in
educational environments where students may be using low-end devices or shared
computing resources (Tan et al., 2021). The game is designed to run efficiently on
standard classroom computers, personal laptops or tablets. This section outlines both
the software tools used during development and the minimum hardware specifications
required for end-users to play the game. Table 3.4 and 3.5 shows the required software

and hardware requirements needed.

Software Requirements:

Table 3.4 Software Requirements Details

Component Description

Game Engine Built with Godot Engine v4.4, an open-source engine for

rapid prototyping and cross-platform deployment.

Programming Gameplay logic was implemented in GDScript for its

Language simplicity and readability.

User Interface Design | UI elements such as dialogue boxes, puzzle interfaces
and HUD components were created using Godot’s built-

in node system.

Asset Creation Tools o Piskel and Aseprite for creating pixel art graphics.
e Bfxr and Audacity for sound effects and music.

e Trello and Notion for task tracking and

documentation.

Version Control Git and GitHub were used for version control and

collaboration during development.

Export Targets The final build was exported for two platforms:
e Windows PC

e HTMLS5 Web Browser

52

Hardware Requirements:

Table 3.5 Hardware Requirements Details

primary drive (HDD or SSD)

Requirements Minimum Specification Recommended
Specification
Operating Windows 7 SP1 or higher / Windows 10 (64-bit) or
System Web browser (Chrome, higher / Modern web
Firefox, Edge) browser (latest versions)
Processor Intel Core 13-2100 or Intel Core 15-3570 or better
equivalent (AMD A6-Series or | (AMD A8-7410)
equivalent)
RAM 1 GB DDR3 SDRAM 2 GB DDR3 SDRAM
Graphics Integrated graphics card (e.g., | Dedicated GPU not
Intel HD Graphics 2000 or required; mid-range
AMD Radeon HD 6310) integrated GPU (e.g., Intel
UHD Graphics 630/
Radeon HD 7660G)
Storage 200 MB available space on the | 500 MB available space on

the primary drive (SSD
preferred)

Input Device

Keyboard and mouse (PS/2 or
USB)

Keyboard, mouse or

gamepad support (USB)

The minimal requirements reflect the project’s focus on accessibility for first-year

students, many of whom may use low-end devices in classroom settings (Tan et al.,

2021). By supporting both Windows and HTMLS5, the game can be deployed in labs,

libraries, or at home, aligning with the objective of creating an "anytime, anywhere"

learning tool (Cheong et al., 2020).

53

3.6 Conclusion

This chapter outlined the methodology used in the development of “Code[X]:Nexus”,
a narrative-driven 2D top-down adventure game designed to teach introductory-level
C++ programming to first-year diploma students. The development process followed
a structured Game Development Life Cycle (GDLC), ensuring that each stage starting
from initial design to final release was aligned with both educational goals and
technical feasibility.

Each phase of the GDLC contributed directly to the project's core objectives,
starting with the Design phase, which established a strong foundation for integrating
narrative and learning content. The subsequent Development phase implemented these
ideas using the Godot Engine v4.4, leveraging its accessibility for educational
purposes. Rigorous Evaluation and Testing phases then ensured the learning modules
were accurate, engaging, and appropriately challenging. Finally, the Release phase
made the game available to its target audience, enabling valuable feedback collection
for future improvements.

By following this systematic approach, the proposed project was developed as an
accessible, engaging and educationally meaningful tool that bridges the gap between
traditional instruction and interactive learning. The modular system architecture and
minimal hardware requirements ensure that the game can be used in a variety of

educational environments, including classrooms with limited technological resources.

54

References

Al-Maroof, I. A.J., Al-Emran, M., Al-Shadafan, S., & Al-Ahbabi, S. (2024). A review
of game-based learning in computer science education. International Journal

of Information Management Data Insights, 4(1), 100220.

Alves, J. R. M., & Letouze, P. (2018). The curriculum integration of a course of
“Introduction to Programming Logic” with a serious game — Colobot.
International Journal of Social Science and Humanity, 8(11), 275-280.

https://doi.org/10.18178/IJSSH.2018.V9.974

Arnedo, J., & Garcia Solérzano, D. (2023). Coding is fun: Engaging adult online
learners using programming games. In A. Garcia Holgado & F. J. Garcia
Penalvo (Eds.), Proceedings TEEM 2022 (pp. 606—614). Springer.
http://doi.org/10.1007/978-981-99-0942-1 63

Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., ... & Pereira, J.
(2016). An update to the systematic literature review of empirical evidence of

the impacts and outcomes of computer games and serious games. Computers

& Education, 94, 178—192. https://doi.org/10.1016/j.compedu.2015.11.003

Chan, H. L., Lin, H. C., & Lee, T. H. (2023). Editorial: New educational technology
and its impact on student-centered learning. Frontiers in Psychology, 14,

1189423.

Cheong, C., Flippou, F., & France, D. (2020). Game-based learning in computing
education: A mapping review. ACM Computing Surveys, 53(4), 1-37.
https://doi.org/10.4018/1IJGBL.2020010101

56

Choi, W. C., & Choi, 1. C. (2024). Investigating the effect of the serious game
CodeCombat on cognitive load in Python programming education. In
Proceedings of the 2024 IEEE World Engineering Education Conference
(EDUNINE) (pp- 1-10). IEEE.
https://doi.org/10.1109/EDUNINE60625.2024.10500551

de Oliveira, P. F. F., de Oliveira, A. L. M., & de Souza, W. S. L. (2022). Gamification
in programming education: A systematic mapping study. Journal of the

Brazilian Computer Society, 28(1), 1-28.

Dobroskok, I., Tan, A., Bekirogullari, Z., Kurucay, M., & Ivanova, T. (2022). Game
development software tools in higher educational institutions: Experience of
Ukraine, Turkey and Bulgaria. ResearchGate.
https://www.researchgate.net/publication/365574044

Giannakoulas, V., & Xinogalos, S. (2024). When Narratives Meet Algorithms: How
Story-Based Educational Games Transform Learning into a Computational

Adventure. GESS Education.

Heithausen, C. (2020, February 15). A look at "Human Resource Machine" according
to Papert’s ideas. Cologne Game Lab, TH Kdln — University of Applied
Sciences. https:/www.researchgate.net/publication/361112910

Holly, S., Tan, K. L., & Lim, W. Y. (2024). Gamification in programming education:
A systematic review. IEEE Transactions on Education, 67(2), 123-135.
https://doi.org/10.48550/arXiv.2406.03055

Kucher, T. (2021). Storytelling and decision-making in educational games: Enhancing
memory recall and engagement. Journal of Educational Technology

Development and Exchange, 14(1), 45-60.

57

Kroustalli, C., & Xinogalos, S. (2021). Studying the effects of teaching programming
to lower secondary school students with a serious game: A case study with
Python and CodeCombat. Education and Information Technologies, 26(5),
6069—-6095. https://doi.org/10.1007/s10639-021-10596-y

Kalogiannakis, K., Papadakis, S., & Zourmpakis, A.1. (2021). Gamification in science
education. A systematic review of the literature. Education Sciences, 11(1), 22.

https://doi.org/10.3390/educscil 1010022

Lozano-Lozano, C., Cardenas-Robledo, L. A., & Gonzalez-Ramirez, T. (2023). A
serious game to learn the OSI model based on experiential learning. Computer

Applications in Engineering Education, 31(4), 932-953.

Qian, M., & Clark, K. R. (2019). Game-based learning and 21st-century skills: A
review of recent research. Educational Research Review, 27, 1-16.

https://doi.org/10.1016/j.chb.2016.05.023

Tan, S. L., Neill, S., & D’Souza, D. (2021). Motivation and learning in gamified
computer science courses: An exploratory study. Computers & Education

Open, 2, 100050.

van Gaalen, A. E. J., Brouwer, J., Schonrock-Adema, J., Bouwkamp-Timmer, T.,
Jaarsma, A. D. C., & Georgiadis, J. R. (2021). Gamification of health professions
education: A systematic review. Advances in Health Sciences Education, 26, 683-

711. https://doi.org/10.1007/s10459-020-10000-3

58

https://doi.org/10.3390/educsci11010022

Zainuddin, Z., Chu, S. K. W., & Shujahat, M. (2020). Mastery learning in gamified
classrooms: A systematic literature review. FEducation and Information

Technologies, 25(5), 4525-4549.

59

